Multiscale technologies for treatment of ischemic cardiomyopathy

Abstract

The adult mammalian heart possesses only limited capacity for innate regeneration and the response to severe injury is dominated by the formation of scar tissue. Current therapy to replace damaged cardiac tissue is limited to cardiac transplantation and thus many patients suffer progressive decay in the heart's pumping capacity to the point of heart failure. Nanostructured systems have the potential to revolutionize both preventive and therapeutic approaches for treating cardiovascular disease. Here, we outline recent advancements in nanotechnology that could be exploited to overcome the major obstacles in the prevention of and therapy for heart disease. We also discuss emerging trends in nanotechnology affecting the cardiovascular field that may offer new hope for patients suffering massive heart attacks.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Applications of various nanoplatforms in the prevention and treatment of cardiovascular disease.
Figure 2: Dual-antibody-conjugated magnetic nanoparticles target therapeutic cells and regenerate the injured myocardium.
Figure 3: The use of a living contrast agent, MEs derived from magnetotactic bacteria, for safe labelling and precise monitoring of CMs.
Figure 4: Application of nanostructured cardiac patch device in repair/regeneration of MI.

References

  1. 1

    Bui, A. L., Horwich, T. B. & Fonarow, G. C. Epidemiology and risk profile of heart failure. Nat. Rev. Cardiol. 8, 30–41 (2011).

    Article  Google Scholar 

  2. 2

    Johnson, N. B. et al. CDC National Health Report: leading causes of morbidity and mortality and associated behavioral risk and protective factors—United States, 2005–2013. MMWR Surveill. Summ. 63, 3–27 (2014).

    Google Scholar 

  3. 3

    Thygesen, K., Alpert, J. S. & White, H. D. Universal definition of myocardial infarction. J. Am. Coll. Cardiol. 50, 2173–2195 (2007).

    Article  Google Scholar 

  4. 4

    Cassar, A., Holmes, D. R. Jr., Rihal, C. S. & Gersh, B. J. Chronic coronary artery disease: diagnosis and management. Mayo Clin. Proc. 84, 1130–1146 (2009).

    CAS  Article  Google Scholar 

  5. 5

    White, H. D. & Chew, D. P. Acute myocardial infarction. Lancet 372, 570–584 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Senyo, S. E. et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493, 433–436 (2013).

    CAS  Article  Google Scholar 

  7. 7

    Ziaeian, B. & Fonarow, G. C. Epidemiology and aetiology of heart failure. Nat. Rev. Cardiol. 13, 368–378 (2016).

    Article  Google Scholar 

  8. 8

    Dunlay, S. M. & Roger, V. L. Understanding the epidemic of heart failure: past, present, and future. Curr. Heart Fail. Rep. 11, 404–415 (2014).

    Article  Google Scholar 

  9. 9

    Wijns, W. et al. Guidelines on myocardial revascularization. Eur. Heart J. 31, 2501–2555 (2010).

    Article  Google Scholar 

  10. 10

    Libby, P., Ridker, P. M. & Maseri, A. Inflammation and atherosclerosis. Circulation 105, 1135–1143 (2002).

    CAS  Article  Google Scholar 

  11. 11

    Nabel, E. G. & Braunwald, E. A tale of coronary artery disease and myocardial infarction. N. Engl. J. Med. 366, 54–63 (2012).

    CAS  Article  Google Scholar 

  12. 12

    Libby, P., Ridker, P. M. & Hansson, G. K. Progress and challenges in translating the biology of atherosclerosis. Nature 473, 317–325 (2011).

    CAS  Article  Google Scholar 

  13. 13

    Begum, M. & Sharma, H. Scope of nanomedicine against coronary artery disease: a review. Eur. J. Pharm. Med. Res. 3, 635–641 (2016).

    Google Scholar 

  14. 14

    Mahmoudi, M. et al. Protein−nanoparticle interactions: opportunities and challenges. Chem. Rev. 111, 5610–5637 (2011).

    CAS  Article  Google Scholar 

  15. 15

    Nahrendorf, M. et al. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 117, 379–387 (2008).

    CAS  Article  Google Scholar 

  16. 16

    Mahmoudi, M., Serpooshan, V. & Laurent, S. Engineered nanoparticles for biomolecular imaging. Nanoscale 3, 3007–3026 (2011).

    CAS  Article  Google Scholar 

  17. 17

    Sanz, J. & Fayad, Z. A. Imaging of atherosclerotic cardiovascular disease. Nature 451, 953–957 (2008).

    CAS  Article  Google Scholar 

  18. 18

    Zanganeh, S. et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat. Nanotech. 11, 986–994 (2016).

    CAS  Article  Google Scholar 

  19. 19

    Lobatto, M. E., Fuster, V., Fayad, Z. A. & Mulder, W. J. Perspectives and opportunities for nanomedicine in the management of atherosclerosis. Nat. Rev. Drug Discov. 10, 835–852 (2011).

    CAS  Article  Google Scholar 

  20. 20

    Korin, N. et al. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science 337, 738–742 (2012).

    CAS  Article  Google Scholar 

  21. 21

    Fredman, G. et al. Targeted nanoparticles containing the proresolving peptide Ac2–26 protect against advanced atherosclerosis in hypercholesterolemic mice. Sci. Transl. Med. 7, 275ra220 (2015).

    Google Scholar 

  22. 22

    Kamaly, N. et al. Targeted interleukin-10 nanotherapeutics developed with a microfluidic chip enhance resolution of inflammation in advanced atherosclerosis. ACS Nano 10, 5280–5292 (2016).

    CAS  Article  Google Scholar 

  23. 23

    Kamaly, N. et al. Development and in vivo efficacy of targeted polymeric inflammation-resolving nanoparticles. Proc. Natl Acad. Sci. USA 110, 6506–6511 (2013).

    CAS  Article  Google Scholar 

  24. 24

    Kamaly, N., He, J. C., Ausiello, D. A. & Farokhzad, O. C. Nanomedicines for renal disease: current status and future applications. Nat. Rev. Nephrol. 12, 738–753 (2016).

    CAS  Article  Google Scholar 

  25. 25

    Duivenvoorden, R. et al. A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nat. Commun. 5, 3531 (2014).

    Article  CAS  Google Scholar 

  26. 26

    Chan, J. M. et al. Spatiotemporal controlled delivery of nanoparticles to injured vasculature. Proc. Natl Acad. Sci. USA 107, 2213–2218 (2010).

    CAS  Article  Google Scholar 

  27. 27

    Chnari, E., Nikitczuk, J. S., Wang, J., Uhrich, K. E. & Moghe, P. V. Engineered polymeric nanoparticles for receptor-targeted blockage of oxidized low density lipoprotein uptake and atherogenesis in macrophages. Biomacromolecules 7, 1796–1805 (2006).

    CAS  Article  Google Scholar 

  28. 28

    Lewis, D. R. et al. Sugar-based amphiphilic nanoparticles arrest atherosclerosis in vivo. Proc. Natl Acad. Sci. USA 112, 2693–2698 (2015).

    CAS  Article  Google Scholar 

  29. 29

    Tomasini, M. D., Zablocki, K., Petersen, L. K., Moghe, P. V. & Tomassone, M. S. Coarse grained molecular dynamics of engineered macromolecules for the inhibition of oxidized low-density lipoprotein uptake by macrophage scavenger receptors. Biomacromolecules 14, 2499–2509 (2013).

    CAS  Article  Google Scholar 

  30. 30

    Monopoli, M. P., Åberg, C., Salvati, A. & Dawson, K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotech. 7, 779–786 (2012).

    CAS  Article  Google Scholar 

  31. 31

    Mahmoudi, M. Protein corona: The golden gate to clinical applications of nanoparticles. Int. J. Biochem. Cell Biol. 75, 141–142 (2016).

    CAS  Article  Google Scholar 

  32. 32

    Caracciolo, G., Farokhzad, O. C. & Mahmoudi, M. Biological identity of nanoparticles in vivo: clinical implications of the protein corona. Trends Biotechnol. 35, 257–264 (2017).

    CAS  Article  Google Scholar 

  33. 33

    Salvati, A. et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotech. 7, 779–786 (2012).

    Article  CAS  Google Scholar 

  34. 34

    Mirshafiee, V., Mahmoudi, M., Lou, K., Cheng, J. & Kraft, M. L. Protein corona significantly reduces active targeting yield. Chem. Commun. 49, 2557–2559 (2013).

    CAS  Article  Google Scholar 

  35. 35

    Behzadi, S. et al. Protein corona change the drug release profile of nanocarriers: the “overlooked” factor at the nanobio interface. Colloids Surf. B 123, 143–149 (2014).

    CAS  Article  Google Scholar 

  36. 36

    Moyano, D. F. et al. Fabrication of corona-free nanoparticles with tunable hydrophobicity. ACS Nano 8, 6748–6755 (2014).

    CAS  Article  Google Scholar 

  37. 37

    Mirshafiee, V., Kim, R., Park, S., Mahmoudi, M. & Kraft, M. L. Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake. Biomaterials 75, 295–304 (2016).

    CAS  Article  Google Scholar 

  38. 38

    Deng, Z. J., Liang, M., Monteiro, M., Toth, I. & Minchin, R. F. Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat. Nanotech. 6, 39–44 (2011).

    CAS  Article  Google Scholar 

  39. 39

    Behfar, A., Crespo-Diaz, R., Terzic, A. & Gersh, B. J. Cell therapy for cardiac repair—lessons from clinical trials. Nat. Rev. Cardiol. 11, 232–246 (2014).

    Article  Google Scholar 

  40. 40

    Nguyen, P. K., Rhee, J. W. & Wu, J. C. Adult stem cell therapy and heart failure, 2000 to 2016: a systematic review. JAMA Cardiol. 1, 831–841 (2016).

    Article  Google Scholar 

  41. 41

    Burridge, P. W., Keller, G., Gold, J. D. & Wu, J. C. Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 10, 16–28 (2012).

    CAS  Article  Google Scholar 

  42. 42

    Ranganath, S. H., Levy, O., Inamdar, M. S. & Karp, J. M. Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 10, 244–258 (2012).

    CAS  Article  Google Scholar 

  43. 43

    Nguyen, P. K., Neofytou, E., Rhee, J.-W. & Wu, J. C. Potential strategies to address the major clinical barriers facing stem cell regenerative therapy for cardiovascular disease: a review. JAMA Cardiol. 1, 953–962 (2016).

    Article  Google Scholar 

  44. 44

    Mahmoudi, M. et al. Novel MRI contrast agent from magnetotactic bacteria enables in vivo tracking of iPSC-derived cardiomyocytes. Sci. Rep. 6, 26960 (2016).

    CAS  Article  Google Scholar 

  45. 45

    Chong, J. J. et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510, 273–277 (2014).

    CAS  Article  Google Scholar 

  46. 46

    Riegler, J. et al. Comparison of magnetic resonance imaging and serum biomarkers for detection of human pluripotent stem cell-derived teratomas. Stem Cell Rep. 6, 176–187 (2016).

    CAS  Article  Google Scholar 

  47. 47

    Burridge, P. W. et al. Chemically defined generation of human cardiomyocytes. Nat. Methods 11, 855–860 (2014).

    CAS  Article  Google Scholar 

  48. 48

    Cheng, K. et al. Magnetic antibody-linked nanomatchmakers for therapeutic cell targeting. Nat. Commun. 5, 4880 (2014).

    CAS  Article  Google Scholar 

  49. 49

    Shiba, Y. et al. Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 489, 322–325 (2012).

    CAS  Article  Google Scholar 

  50. 50

    Kawamura, M. et al. Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation 126, S29–S37 (2012).

    CAS  Article  Google Scholar 

  51. 51

    Laflamme, M. A. & Murry, C. E. Heart regeneration. Nature 473, 326–335 (2011).

    CAS  Article  Google Scholar 

  52. 52

    Mirotsou, M. et al. Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc. Natl Acad. Sci. USA 104, 1643–1648 (2007).

    CAS  Article  Google Scholar 

  53. 53

    Han, J. et al. Iron oxide nanoparticle-mediated development of cellular gap junction crosstalk to improve mesenchymal stem cells' therapeutic efficacy for myocardial infarction. ACS Nano 9, 2805–2819 (2015).

    CAS  Article  Google Scholar 

  54. 54

    Vandergriff, A. C. et al. Magnetic targeting of cardiosphere-derived stem cells with ferumoxytol nanoparticles for treating rats with myocardial infarction. Biomaterials 35, 8528–8539 (2014).

    CAS  Article  Google Scholar 

  55. 55

    Xu, C. et al. Tracking mesenchymal stem cells with iron oxide nanoparticle loaded poly (lactide-co-glycolide) microparticles. Nano Lett. 12, 4131–4139 (2012).

    CAS  Article  Google Scholar 

  56. 56

    Yang, X. Magnetic Resonance Imaging of Stem Cell Applications (Nova Science, 2015).

    Google Scholar 

  57. 57

    Mahmoudi, M., Bertrand, N., Zope, H. & Farokhzad, O. Emerging understanding of the nano-bio interface in nanomedicin. Nano Today 11, 817–832 (2016).

    CAS  Article  Google Scholar 

  58. 58

    Chen, I. Y. et al. Comparison of optical bioluminescence reporter gene and superparamagnetic iron oxide MR contrast agent as cell markers for noninvasive imaging of cardiac cell transplantation. Mol. Imaging Biol. 11, 178–187 (2009).

    Article  Google Scholar 

  59. 59

    Terrovitis, J. et al. Magnetic resonance imaging overestimates ferumoxide-labeled stem cell survival after transplantation in the heart. Circulation 117, 1555–1562 (2008).

    Article  Google Scholar 

  60. 60

    Nguyen, P. K., Riegler, J. & Wu, J. C. Stem cell imaging: from bench to bedside. Cell Stem Cell 14, 431–444 (2014).

    CAS  Article  Google Scholar 

  61. 61

    Takahama, H. et al. Liposomal amiodarone augments anti-arrhythmic effects and reduces hemodynamic adverse effects in an ischemia/reperfusion rat model. Cardiovasc. Drugs Ther. 27, 125–132 (2013).

    CAS  Article  Google Scholar 

  62. 62

    Ewer, M. S. & Ewer, S. M. Cardiotoxicity of anticancer treatments: what the cardiologist needs to know. Nat. Rev. Cardiol. 7, 564–575 (2010).

    Article  Google Scholar 

  63. 63

    Burridge, P. et al. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat. Med. 22, 547–556 (2016).

    CAS  Article  Google Scholar 

  64. 64

    Louch, W. E., Sheehan, K. A. & Wolska, B. M. Methods in cardiomyocyte isolation, culture, and gene transfer. J. Mol. Cell. Cardiol. 51, 288–298 (2011).

    CAS  Article  Google Scholar 

  65. 65

    Yang, X., Pabon, L. & Murry, C. E. Engineering adolescence maturation of human pluripotent stem cell–derived cardiomyocytes. Circ. Res. 114, 511–523 (2014).

    CAS  Article  Google Scholar 

  66. 66

    Kattman, S. J. et al. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8, 228–240 (2011).

    CAS  Article  Google Scholar 

  67. 67

    Sharma, A. et al. High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells. Sci. Transl. Med. 9, eaaf2584 (2017).

    Article  CAS  Google Scholar 

  68. 68

    Wei, K. et al. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature 525, 479–485 (2015).

    CAS  Article  Google Scholar 

  69. 69

    Ribeiro, A. J. et al. Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness. Proc. Natl Acad. Sci. USA 112, 12705–12710 (2015).

    CAS  Article  Google Scholar 

  70. 70

    Sayed, N., Liu, C. & Wu, J. C. Translation of human-induced pluripotent stem cells: from clinical trial in a dish to precision medicine. J. Am. Coll. Cardiol. 67, 2161–2176 (2016).

    Article  Google Scholar 

  71. 71

    O'Cearbhaill, E. D., Ng, K. S. & Karp, J. Emerging medical devices for minimally invasive cell therapy. Mayo Clin. Proc. 89, 259–273 (2014).

    Article  Google Scholar 

  72. 72

    Wang, G. et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat. Med. 20, 616–623 (2014).

    CAS  Article  Google Scholar 

  73. 73

    Yang, H. S. et al. Electroconductive nanopatterned substrates for enhanced myogenic differentiation and maturation. Adv. Healthcare Mater. 5, 137–145 (2016).

    CAS  Article  Google Scholar 

  74. 74

    Wang, P.-Y., Yu, J., Lin, J.-H. & Tsai, W.-B. Modulation of alignment, elongation and contraction of cardiomyocytes through a combination of nanotopography and rigidity of substrates. Acta Biomater. 7, 3285–3293 (2011).

    CAS  Article  Google Scholar 

  75. 75

    Macadangdang, J. et al. Nanopatterned human iPSC-based model of a dystrophin-null cardiomyopathic phenotype. Cell. Mol. Bioeng. 8, 320–332 (2015).

    CAS  Article  Google Scholar 

  76. 76

    Carson, D. et al. Nanotopography-induced structural anisotropy and sarcomere development in human cardiomyocytes derived from induced pluripotent stem cells. ACS Appl. Mater. Interfaces 8, 21923–21932 (2016).

    CAS  Article  Google Scholar 

  77. 77

    French, A. et al. Enabling consistency in pluripotent stem cell-derived products for research and development and clinical applications through material standards. Stem Cells Transl. Med. 4, 217–223 (2015).

    CAS  Article  Google Scholar 

  78. 78

    Laflamme, M. A. et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25, 1015–1024 (2007).

    CAS  Article  Google Scholar 

  79. 79

    Mashinchian, O. et al. Regulation of stem cell fate by nanomaterial substrates. Nanomedicine 10, 829–847 (2015).

    CAS  Article  Google Scholar 

  80. 80

    Mahmoudi, M. et al. Cell-imprinted substrates direct the fate of stem cells. ACS Nano 7, 8379–8384 (2013).

    CAS  Article  Google Scholar 

  81. 81

    Mashinchian, O. et al. Cell-imprinted substrates act as an artificial niche for skin regeneration. ACS Appl. Mater. Interfaces 6, 13280–13292 (2014).

    CAS  Article  Google Scholar 

  82. 82

    Bonakdar, S. et al. Cell-imprinted substrates modulate differentiation, redifferentiation, and transdifferentiation. ACS Appl. Mater. Interfaces 8, 13777–13784 (2016).

    CAS  Article  Google Scholar 

  83. 83

    Wekerle, T. & Grinyó, J. M. Belatacept: from rational design to clinical application. Transpl. Int. 25, 139–150 (2012).

    CAS  Article  Google Scholar 

  84. 84

    Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

    CAS  Article  Google Scholar 

  85. 85

    Rong, Z. et al. An effective approach to prevent immune rejection of human ESC-derived allografts. Cell Stem Cell 14, 121–130 (2014).

    CAS  Article  Google Scholar 

  86. 86

    Uyttenhove, C. et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2, 3-dioxygenase. Nat. Med. 9, 1269–1274 (2003).

    CAS  Article  Google Scholar 

  87. 87

    Evans, C. W., Iyer, K. S. & Hool, L. C. The potential for nanotechnology to improve delivery of therapy to the acute ischemic heart. Nanomedicine 11, 817–832 (2016).

    CAS  Article  Google Scholar 

  88. 88

    Heusch, G. et al. Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 383, 1933–1943 (2014).

    Article  Google Scholar 

  89. 89

    Dvir, T. et al. Nanoparticles targeting the infarcted heart. Nano Lett. 11, 4411–4414 (2011).

    CAS  Article  Google Scholar 

  90. 90

    Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986).

    CAS  Google Scholar 

  91. 91

    Gerlowski, L. E. & Jain, R. K. Microvascular permeability of normal and neoplastic tissues. Microvasc. Res. 31, 288–305 (1986).

    CAS  Article  Google Scholar 

  92. 92

    Bertrand, N., Wu, J., Xu, X., Kamaly, N. & Farokhzad, O. C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Delivery Rev. 66, 2–25 (2014).

    CAS  Article  Google Scholar 

  93. 93

    Maeda, H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv. Drug Delivery Rev. 91, 3–6 (2015).

    CAS  Article  Google Scholar 

  94. 94

    Shi, J., Kantoff, P. W., Wooster, R. & Farokhzad, O. C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17, 20–37 (2017).

    CAS  Article  Google Scholar 

  95. 95

    Hardy, N. et al. Nanoparticle-mediated dual delivery of an antioxidant and a peptide against the L-Type Ca2+ channel enables simultaneous reduction of cardiac ischemia-reperfusion injury. ACS Nano 9, 279–289 (2014).

    Article  CAS  Google Scholar 

  96. 96

    Leuschner, F. et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat. Biotechnol. 29, 1005–1010 (2011).

    CAS  Article  Google Scholar 

  97. 97

    Force, T., Krause, D. S. & Van Etten, R. A. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat. Rev. Cancer 7, 332–344 (2007).

    CAS  Article  Google Scholar 

  98. 98

    Yeh, E. T. H. et al. Cardiovascular complications of cancer therapy: diagnosis, pathogenesis, and management. Circulation 109, 3122–3131 (2004).

    Article  Google Scholar 

  99. 99

    Nasr, M., Nafee, N., Saad, H. & Kazem, A. Improved antitumor activity and reduced cardiotoxicity of epirubicin using hepatocyte-targeted nanoparticles combined with tocotrienols against hepatocellular carcinoma in mice. Eur. J. Pharm. Biopharm. 88, 216–225 (2014).

    CAS  Article  Google Scholar 

  100. 100

    Setyawati, M. et al. Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE–cadherin. Nat. Commun. 4, 1673 (2013).

    CAS  Article  Google Scholar 

  101. 101

    Smith, I., Liu, X., Smith, L. & Ma, P. Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 226–236 (2009).

    CAS  Article  Google Scholar 

  102. 102

    Dvir, T., Timko, B. P., Kohane, D. S. & Langer, R. Nanotechnological strategies for engineering complex tissues. Nat. Nanotech. 6, 13–22 (2011).

    CAS  Article  Google Scholar 

  103. 103

    Patel, D. N. & Bailey, S. R. Nanotechnology in cardiovascular medicine. Catheter. Cardiovasc. Interv. 69, 643–654 (2007).

    Article  Google Scholar 

  104. 104

    Iverson, N., Plourde, N., Chnari, E., Nackman, G. B. & Moghe, P. V. Convergence of nanotechnology and cardiovascular medicine. BioDrugs 22, 1–10 (2008).

    CAS  Article  Google Scholar 

  105. 105

    Riegler, J. et al. Human engineered heart muscles engraft and survive long term in a rodent myocardial infarction model. Circ. Res. 117, 720–730 (2015).

    CAS  Article  Google Scholar 

  106. 106

    Serpooshan, V. et al. The effect of bioengineered acellular collagen patch on cardiac remodeling and ventricular function post myocardial infarction. Biomaterials 34, 9048–9055 (2013).

    CAS  Article  Google Scholar 

  107. 107

    Hasan, A. et al. Injectable hydrogels for cardiac tissue repair after myocardial infarction. Adv. Sci. 2, 1500122 (2015).

    Article  CAS  Google Scholar 

  108. 108

    Engelmayr, G. C. et al. Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat. Mater. 7, 1003–1010 (2008).

    CAS  Article  Google Scholar 

  109. 109

    Souza, G. R. et al. Three-dimensional tissue culture based on magnetic cell levitation. Nat. Nanotech. 5, 291–296 (2010).

    CAS  Article  Google Scholar 

  110. 110

    Dvir, T. et al. Nanowired three-dimensional cardiac patches. Nat. Nanotech. 6, 720–725 (2011).

    CAS  Article  Google Scholar 

  111. 111

    Feiner, R. et al. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function. Nat. Mater. 15, 679–85 (2016).

    CAS  Article  Google Scholar 

  112. 112

    Bursac, N., Loo, Y., Leong, K. & Tung, L. Novel anisotropic engineered cardiac tissues: studies of electrical propagation. Biochem. Biophys. Res. Commun. 361, 847–853 (2007).

    CAS  Article  Google Scholar 

  113. 113

    Timko, B. P., Cohen-Karni, T., Qing, Q., Tian, B. & Lieber, C. M. Design and implementation of functional nanoelectronic interfaces with biomolecules, cells, and tissue using nanowire device arrays. IEEE Trans. Nanotechnol. 9, 269–280 (2010).

    Article  Google Scholar 

  114. 114

    Tian, B. et al. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 830–834 (2010).

    CAS  Article  Google Scholar 

  115. 115

    Miura, M. et al. Effect of nonuniform muscle contraction on sustainability and frequency of triggered arrhythmias in rat cardiac muscle. Circulation 121, 2711–2717 (2010).

    CAS  Article  Google Scholar 

  116. 116

    Liau, B., Zhang, D. & Bursac, N. Functional cardiac tissue engineering. Regen. Med. 7, 187–206 (2012).

    CAS  Article  Google Scholar 

  117. 117

    Tzatzalos, E., Abilez, O. J., Shukla, P. & Wu, J. C. Engineered heart tissues and induced pluripotent stem cells: macro-and microstructures for disease modeling, drug screening, and translational studies. Adv. Drug Delivery Rev. 96, 234–244 (2016).

    CAS  Article  Google Scholar 

  118. 118

    Burdick, J. A., Mauck, R. L., Gorman, J. H. & Gorman, R. C. Acellular biomaterials: an evolving alternative to cell-based therapies. Sci. Transl. Med. 5, 176ps4 (2013).

    Article  CAS  Google Scholar 

  119. 119

    Baker, B. M., Handorf, A. M., Ionescu, L. C., Li, W.-J. & Mauck, R. L. New directions in nanofibrous scaffolds for soft tissue engineering and regeneration. Expert Rev. Med. Devices 6, 515–532 (2009).

    CAS  Article  Google Scholar 

  120. 120

    Lee, J. W. 3D nanoprinting technologies for tissue engineering applications. J. Nanomater. 2015, 213521 (2015).

    Google Scholar 

  121. 121

    Serpooshan, V., Mahmoudi, M., Hu, D. A., Hu, J. B. & Wu, S. M. Bioengineering cardiac constructs using 3D printing. J. 3D Printing Med. 1, 123–139 (2017).

    CAS  Article  Google Scholar 

  122. 122

    Giannopoulos, A. A. et al. Applications of 3D printing in cardiovascular diseases. Nat. Rev. Cardiol. 13, 701–718 (2016).

    CAS  Article  Google Scholar 

  123. 123

    Dalton, P. D., Joergensen, N. T., Groll, J. & Moeller, M. Patterned melt electrospun substrates for tissue engineering. Biomed. Mater. 3, 034109 (2008).

    Article  CAS  Google Scholar 

  124. 124

    Chaudhury, K., Kumar, V., Kandasamy, J. & RoyChoudhury, S. Regenerative nanomedicine: current perspectives and future directions. Int. J. Nanomed. 9, 4153–4167 (2014).

    Article  Google Scholar 

  125. 125

    Kamaly, N., Xiao, Z., Valencia, P. M., Radovic-Moreno, A. F. & Farokhzad, O. C. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev. 41, 4153–4167 (2012).

    Article  CAS  Google Scholar 

  126. 126

    Behzadi, S. et al. Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev. 46, 4218–4244 (2017).

    CAS  Article  Google Scholar 

  127. 127

    Bertrand, N. et al. Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat. Commun. (in the press).

  128. 128

    Mahmoudi, M. et al. Temperature: the “ignored” factor at the nanobio interface. ACS Nano 7, 6555–6562 (2013).

    CAS  Article  Google Scholar 

  129. 129

    Mahmoudi, M. et al. Variation of protein corona composition of gold nanoparticles following plasmonic heating. Nano Lett. 14, 6–12 (2014).

    CAS  Article  Google Scholar 

  130. 130

    Monopoli, M. P. et al. Physical−chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 133, 2525–2534 (2011).

    CAS  Article  Google Scholar 

  131. 131

    Hajipour, M. J., Laurent, S., Aghaie, A., Rezaee, F. & Mahmoudi, M. Personalized protein coronas: a “key” factor at the nanobiointerface. Biomater. Sci. 2, 1210–1221 (2014).

    CAS  Article  Google Scholar 

  132. 132

    Corbo, C., Molinaro, R., Tabatabaei, M., Farokhzad, O. C. & Mahmoudi, M. Personalized protein corona on nanoparticles and its clinical implications. Biomater. Sci. 5, 378–387 (2017).

    CAS  Article  Google Scholar 

  133. 133

    Walkey, C. D. et al. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano 8, 2439–2455 (2014).

    CAS  Article  Google Scholar 

  134. 134

    Bigdeli, A. et al. Exploring cellular interactions of liposomes using protein corona fingerprints and physicochemical properties. ACS Nano 10, 3723–3737 (2016).

    CAS  Article  Google Scholar 

  135. 135

    Sharifi, S. et al. Toxicity of nanomaterials. Chem. Soc. Rev. 41, 2323–2343 (2012).

    CAS  Article  Google Scholar 

  136. 136

    Buzea, C., Pacheco, I. I. & Robbie, K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2, MR17–MR71 (2007).

    Article  Google Scholar 

  137. 137

    Bostan, H. B. et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Life Sci. 165, 91–99 (2016).

    CAS  Article  Google Scholar 

  138. 138

    Fleischer, S., Feiner, R. & Dvir, T. Cutting-edge platforms in cardiac tissue engineering. Curr. Opin. Biotechnol. 47, 23–29 (2017).

    CAS  Article  Google Scholar 

  139. 139

    Hrkach, J. et al. Cardiotoxicity of nano-particles. Sci. Transl. Med. 4, 128ra139 (2012).

    Article  Google Scholar 

  140. 140

    Gu, F. et al. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc. Natl Acad. Sci. USA 105, 2586–2591 (2008).

    CAS  Article  Google Scholar 

  141. 141

    Kim, Y. et al. Mass production and size control of lipid–polymer hybrid nanoparticles through controlled microvortices. Nano Lett. 12, 3587–3591 (2012).

    CAS  Article  Google Scholar 

  142. 142

    Xu, J. et al. Future of the particle replication in nonwetting templates (PRINT) technology. Angew. Chem. Int. Ed. 52, 6580–6589 (2013).

    CAS  Article  Google Scholar 

  143. 143

    Hajipour, M. J. et al. Personalized disease-specific protein corona influences the therapeutic impact of graphene oxide. Nanoscale 7, 8978–8994 (2015).

    CAS  Article  Google Scholar 

  144. 144

    Smith, A. S. T., Macadangdang, J., Leung, W., Laflamme, M. A. & Kim, D.-H. Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening. Biotechnol. Adv. 35, 77–94 (2017).

    CAS  Article  Google Scholar 

  145. 145

    Tenzer, S. et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotech. 8, 772–781 (2013).

    CAS  Article  Google Scholar 

  146. 146

    Pozzi, D. et al. The biomolecular corona of nanoparticles in circulating biological media. Nanoscale 7, 13958–13966 (2015).

    CAS  Article  Google Scholar 

  147. 147

    Ott, H. C. et al. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat. Med. 14, 213–221 (2008).

    CAS  Article  Google Scholar 

  148. 148

    Tian, B. et al. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 11, 986–994 (2012).

    CAS  Article  Google Scholar 

  149. 149

    Sooppan, R. et al. In vivo anastomosis and perfusion of a three-dimensionally-printed construct containing microchannel networks. Tissue Eng. Part C Methods 22, 1–7 (2015).

    Article  CAS  Google Scholar 

  150. 150

    Murphy, S. V. & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773–785 (2014).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health grants HL127464-01A1 (O.C.F.), EB015419 (O.C.F.) and HL133272 (J.C.W.), and Department of Defense grant PC140318 (O.C.F.).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Morteza Mahmoudi or Omid C. Farokhzad.

Ethics declarations

Competing interests

R.L. and O.C.F. declare financial interests in Selecta Biosciences, Tarveda Therapeutics and Placon Therapeutics. R.L. declares financial interests in Moderna.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahmoudi, M., Yu, M., Serpooshan, V. et al. Multiscale technologies for treatment of ischemic cardiomyopathy. Nature Nanotech 12, 845–855 (2017). https://doi.org/10.1038/nnano.2017.167

Download citation

Further reading