Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes


Carbon nanomaterials are robust and possess fascinating properties useful for separation technology applications, but their scalability and high salt rejection when in a strong cross flow for long periods of time remain challenging. Here, we present a graphene-based membrane that is prepared using a simple and environmentally friendly method by spray coating an aqueous dispersion of graphene oxide/few-layered graphene/deoxycholate. The membranes were robust enough to withstand strong cross-flow shear for a prolonged period (120 h) while maintaining NaCl rejection near 85% and 96% for an anionic dye. Experimental results and molecular dynamic simulations revealed that the presence of deoxycholate enhances NaCl rejection in these graphene-based membranes. In addition, these novel hybrid-layered membranes exhibit better chlorine resistance than pure graphene oxide membranes. The desalination performance and aggressive shear and chlorine resistance of these scalable graphene-based membranes are promising for use in practical water separation applications.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: GO/FLG membrane preparation.
Figure 2: Morphology characterization of the membrane building blocks, the GO and FLG sheets.
Figure 3: Membrane robustness under cross flow and desalination performance of GO/FLG membranes.
Figure 4: GO/FLG membrane mechanism, chlorine resistance and dye rejection.
Figure 5: Potential energy maps of BLG between GO sheets.


  1. Mohammad, A. W. et al. Nanofiltration membranes review: recent advances and future prospects. Desalination 356, 226–254 (2015).

    CAS  Article  Google Scholar 

  2. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    CAS  Article  Google Scholar 

  3. Cohen-Tanugi, D. & Grossman, J. C. Mechanical strength of nanoporous graphene as a desalination membrane. Nano Lett. 14, 6171–6178 (2014).

    CAS  Article  Google Scholar 

  4. Cohen-Tanugi, D. & Grossman, J. C. Water desalination across nanoporous graphene. Nano Lett. 12, 3602–3608 (2012).

    CAS  Article  Google Scholar 

  5. Surwade, S. P. et al. Water desalination using nanoporous single-layer graphene. Nat. Nanotech. 10, 459–464 (2015).

    CAS  Article  Google Scholar 

  6. Tölle, F. J., Gamp, K. & Mülhaupt, R. Scale-up and purification of graphite oxide as intermediate for functionalized graphene. Carbon 75, 432–442 (2014).

    Article  Google Scholar 

  7. Segal, M. Selling graphene by the ton. Nat. Nanotech. 4, 612–614 (2009).

    CAS  Article  Google Scholar 

  8. Raidongia, K. & Huang, J. Nanofluidic ion transport through reconstructed layered materials. J. Am. Chem. Soc. 134, 16528–16531 (2012).

    CAS  Article  Google Scholar 

  9. Cruz-Silva, R., Endo, M. & Terrones, M. Graphene oxide films, fibers, and membranes. Nanotechnol. Rev. 5, 377–391 (2016).

    CAS  Article  Google Scholar 

  10. Han, Y., Xu, Z. & Gao, C. Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 23, 3693–3700 (2013).

    CAS  Article  Google Scholar 

  11. Goh, K. et al. All-carbon nanoarchitectures as high-performance separation membranes with superior stability. Adv. Funct. Mater. 25, 7348–7359 (2015).

    CAS  Article  Google Scholar 

  12. Huang, H. et al. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nat. Commun. 4, 2979 (2013).

    Article  Google Scholar 

  13. Akbari, A . et al. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nat. Commun. 7, 10891 (2016).

    CAS  Article  Google Scholar 

  14. Abraham, J . et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotech. 12, 546–550 (2017).

    CAS  Article  Google Scholar 

  15. Yeh, C., Raidongia, K., Shao, J., Yang, Q. & Huang, J. On the origin of the stability of graphene oxide membranes in water. Nat. Chem. 7, 166–170 (2015).

    CAS  Article  Google Scholar 

  16. Park, S. et al. Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2, 572–578 (2008).

    CAS  Article  Google Scholar 

  17. Endo, M. et al. Nanotechnology: ‘buckypaper’ from coaxial nanotubes. Nature 433, 476 (2005).

    CAS  Article  Google Scholar 

  18. Salavagione, H. J., Gomez, M. A. & Martinez, G. Polymeric modification of graphene through esterification of graphite oxide and poly(vinyl alcohol). Macromolecules 42, 6331–6334 (2009).

    CAS  Article  Google Scholar 

  19. Nicolaï, A., Sumpter, B. G. & Meunier, V. Tunable water desalination across graphene oxide framework membranes. Phys. Chem. Chem. Phys. 16, 8646–8654 (2014).

    Article  Google Scholar 

  20. Baker, R. W. Membrane Technology and Applications (Wiley, 2012).

    Book  Google Scholar 

  21. Wei, Y. et al. Declining flux and narrowing nanochannels under wrinkles of compacted graphene oxide nanofiltration membranes. Carbon 108, 568–575 (2016).

    CAS  Article  Google Scholar 

  22. Hu, M. & Mi, B. Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol. 47, 3715–3723 (2013).

    CAS  Article  Google Scholar 

  23. Han, Y., Jiang, Y. & Gao, C. High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes. ACS Appl. Mater. Interfaces 7, 8147–8155 (2015).

    CAS  Article  Google Scholar 

  24. Chan, W. et al. Zwitterion functionalized carbon nanotube/polyamide nanocomposite. ACS Nano 7, 5308–5319 (2013).

    CAS  Article  Google Scholar 

  25. Selectivity, M.-M. I. et al. Ion-responsive channels of zwitterion-carbon nanotube membrane for rapid water permeation and ultrahigh. ACS Nano 9, 7488–7496 (2015).

    Article  Google Scholar 

  26. Liu, G. et al. Graphene oxide for high-efficiency separation membranes: role of electrostatic interactions. Carbon 110, 56–61 (2016).

    CAS  Article  Google Scholar 

  27. Afonso, M. D., Hagmeyer, G. & Gimbel, R. Streaming potential measurements to assess the variation of nanofiltration membranes surface charge with the concentration of salt solutions. Sep. Purif. Technol. 22–23, 52–541 (2001).

    Google Scholar 

  28. Bartels, C., Franks, R., Rybar, S. & Schierach, M. The effect of feed ionic strength on salt passage through reverse osmosis membranes. Desalination 184, 185–195 (2005).

    CAS  Article  Google Scholar 

  29. Inukai, S. et al. High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube·polyamide nanocomposite. Sci. Rep. 5, 13562 (2015).

    Article  Google Scholar 

  30. Wei, N., Peng, X. & Xu, Z. Understanding water permeation in graphene oxide membranes. Appl. Mater. Interfaces 6, 5877–5883 (2014).

    CAS  Article  Google Scholar 

  31. Boukhvalov, D. W., Katsnelson, M. I. & Son, Y.-W. Origin of anomalous water permeation through graphene oxide membrane. Nano Lett. 13, 3930–3935 (2013).

    CAS  Article  Google Scholar 

  32. Mallapragada, S. K. & Peppas, N. A. Dissolution mechanism of semicrystalline poly(vinyl alcohol) in water. J. Polym. Sci. 34, 1339–1346 (1996).

    CAS  Article  Google Scholar 

  33. Marcano, D. C. et al. Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010).

    CAS  Article  Google Scholar 

  34. Cai, W. et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 321, 1815–1817 (2008).

    CAS  Article  Google Scholar 

  35. Smith, W. & Todorov, I. T. A short description of DL_POLY. Mol. Simul. 32, 935–943 (2006).

    CAS  Article  Google Scholar 

  36. Mayo, S. L., Olafson, B. D. & Goddard, W. A. DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 101, 8897–8909 (1990).

    Article  Google Scholar 

  37. Valiev, M. et al. NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 181, 1477–1489 (2010).

    CAS  Article  Google Scholar 

  38. Humphrey, W., Dalke, A. & Schulten, K. VMD—Visual Molecular Dynamics. J. Mol. Graph. 14, 33–38 (1996).

    CAS  Article  Google Scholar 

  39. Kusalik, P. G. & Svishchev, I. M. The spatial structure in liquid water. Science 265, 1219–1221 (1994).

    CAS  Article  Google Scholar 

Download references


This work was supported by the Center of Innovation Program, Global Aqua Innovation Center for Improving Living Standards and Water Sustainability, from the Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations



A.M.-G. designed the experiments, performed FTIR, SEM, Raman spectroscopy and desalination, and wrote the manuscript. R.C.-S. carried out GO synthesis and XPS, and wrote the manuscript. H.M. performed discussion and preliminary DWCNT samples. J.O.-M. performed XRD and wrote the manuscript. T.A. and S.T. performed molecular dynamic simulations. T.F. provided valuable technical assistance. T.H. performed TEM observations. K.T., M.T. and M.E. participated in discussions and wrote the manuscript.

Corresponding authors

Correspondence to Aaron Morelos-Gomez or Morinobu Endo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 4914 kb)

Supplementary Movie 1

Supplementary Movie 1 (MP4 39868 kb)

Supplementary Movie 2

Supplementary Movie 2 (MP4 40210 kb)

Supplementary Movie 3

Supplementary Movie 3 (MP4 38708 kb)

Supplementary Movie 4

Supplementary Movie 4 (MP4 38550 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morelos-Gomez, A., Cruz-Silva, R., Muramatsu, H. et al. Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes. Nature Nanotech 12, 1083–1088 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research