Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes

Abstract

Carbon nanomaterials are robust and possess fascinating properties useful for separation technology applications, but their scalability and high salt rejection when in a strong cross flow for long periods of time remain challenging. Here, we present a graphene-based membrane that is prepared using a simple and environmentally friendly method by spray coating an aqueous dispersion of graphene oxide/few-layered graphene/deoxycholate. The membranes were robust enough to withstand strong cross-flow shear for a prolonged period (120 h) while maintaining NaCl rejection near 85% and 96% for an anionic dye. Experimental results and molecular dynamic simulations revealed that the presence of deoxycholate enhances NaCl rejection in these graphene-based membranes. In addition, these novel hybrid-layered membranes exhibit better chlorine resistance than pure graphene oxide membranes. The desalination performance and aggressive shear and chlorine resistance of these scalable graphene-based membranes are promising for use in practical water separation applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GO/FLG membrane preparation.
Figure 2: Morphology characterization of the membrane building blocks, the GO and FLG sheets.
Figure 3: Membrane robustness under cross flow and desalination performance of GO/FLG membranes.
Figure 4: GO/FLG membrane mechanism, chlorine resistance and dye rejection.
Figure 5: Potential energy maps of BLG between GO sheets.

Similar content being viewed by others

References

  1. Mohammad, A. W. et al. Nanofiltration membranes review: recent advances and future prospects. Desalination 356, 226–254 (2015).

    Article  CAS  Google Scholar 

  2. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  CAS  Google Scholar 

  3. Cohen-Tanugi, D. & Grossman, J. C. Mechanical strength of nanoporous graphene as a desalination membrane. Nano Lett. 14, 6171–6178 (2014).

    Article  CAS  Google Scholar 

  4. Cohen-Tanugi, D. & Grossman, J. C. Water desalination across nanoporous graphene. Nano Lett. 12, 3602–3608 (2012).

    Article  CAS  Google Scholar 

  5. Surwade, S. P. et al. Water desalination using nanoporous single-layer graphene. Nat. Nanotech. 10, 459–464 (2015).

    Article  CAS  Google Scholar 

  6. Tölle, F. J., Gamp, K. & Mülhaupt, R. Scale-up and purification of graphite oxide as intermediate for functionalized graphene. Carbon 75, 432–442 (2014).

    Article  Google Scholar 

  7. Segal, M. Selling graphene by the ton. Nat. Nanotech. 4, 612–614 (2009).

    Article  CAS  Google Scholar 

  8. Raidongia, K. & Huang, J. Nanofluidic ion transport through reconstructed layered materials. J. Am. Chem. Soc. 134, 16528–16531 (2012).

    Article  CAS  Google Scholar 

  9. Cruz-Silva, R., Endo, M. & Terrones, M. Graphene oxide films, fibers, and membranes. Nanotechnol. Rev. 5, 377–391 (2016).

    Article  CAS  Google Scholar 

  10. Han, Y., Xu, Z. & Gao, C. Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 23, 3693–3700 (2013).

    Article  CAS  Google Scholar 

  11. Goh, K. et al. All-carbon nanoarchitectures as high-performance separation membranes with superior stability. Adv. Funct. Mater. 25, 7348–7359 (2015).

    Article  CAS  Google Scholar 

  12. Huang, H. et al. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nat. Commun. 4, 2979 (2013).

    Article  Google Scholar 

  13. Akbari, A . et al. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nat. Commun. 7, 10891 (2016).

    Article  CAS  Google Scholar 

  14. Abraham, J . et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotech. 12, 546–550 (2017).

    Article  CAS  Google Scholar 

  15. Yeh, C., Raidongia, K., Shao, J., Yang, Q. & Huang, J. On the origin of the stability of graphene oxide membranes in water. Nat. Chem. 7, 166–170 (2015).

    Article  CAS  Google Scholar 

  16. Park, S. et al. Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2, 572–578 (2008).

    Article  CAS  Google Scholar 

  17. Endo, M. et al. Nanotechnology: ‘buckypaper’ from coaxial nanotubes. Nature 433, 476 (2005).

    Article  CAS  Google Scholar 

  18. Salavagione, H. J., Gomez, M. A. & Martinez, G. Polymeric modification of graphene through esterification of graphite oxide and poly(vinyl alcohol). Macromolecules 42, 6331–6334 (2009).

    Article  CAS  Google Scholar 

  19. Nicolaï, A., Sumpter, B. G. & Meunier, V. Tunable water desalination across graphene oxide framework membranes. Phys. Chem. Chem. Phys. 16, 8646–8654 (2014).

    Article  Google Scholar 

  20. Baker, R. W. Membrane Technology and Applications (Wiley, 2012).

    Book  Google Scholar 

  21. Wei, Y. et al. Declining flux and narrowing nanochannels under wrinkles of compacted graphene oxide nanofiltration membranes. Carbon 108, 568–575 (2016).

    Article  CAS  Google Scholar 

  22. Hu, M. & Mi, B. Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol. 47, 3715–3723 (2013).

    Article  CAS  Google Scholar 

  23. Han, Y., Jiang, Y. & Gao, C. High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes. ACS Appl. Mater. Interfaces 7, 8147–8155 (2015).

    Article  CAS  Google Scholar 

  24. Chan, W. et al. Zwitterion functionalized carbon nanotube/polyamide nanocomposite. ACS Nano 7, 5308–5319 (2013).

    Article  CAS  Google Scholar 

  25. Selectivity, M.-M. I. et al. Ion-responsive channels of zwitterion-carbon nanotube membrane for rapid water permeation and ultrahigh. ACS Nano 9, 7488–7496 (2015).

    Article  Google Scholar 

  26. Liu, G. et al. Graphene oxide for high-efficiency separation membranes: role of electrostatic interactions. Carbon 110, 56–61 (2016).

    Article  CAS  Google Scholar 

  27. Afonso, M. D., Hagmeyer, G. & Gimbel, R. Streaming potential measurements to assess the variation of nanofiltration membranes surface charge with the concentration of salt solutions. Sep. Purif. Technol. 22–23, 52–541 (2001).

    Google Scholar 

  28. Bartels, C., Franks, R., Rybar, S. & Schierach, M. The effect of feed ionic strength on salt passage through reverse osmosis membranes. Desalination 184, 185–195 (2005).

    Article  CAS  Google Scholar 

  29. Inukai, S. et al. High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube·polyamide nanocomposite. Sci. Rep. 5, 13562 (2015).

    Article  Google Scholar 

  30. Wei, N., Peng, X. & Xu, Z. Understanding water permeation in graphene oxide membranes. Appl. Mater. Interfaces 6, 5877–5883 (2014).

    Article  CAS  Google Scholar 

  31. Boukhvalov, D. W., Katsnelson, M. I. & Son, Y.-W. Origin of anomalous water permeation through graphene oxide membrane. Nano Lett. 13, 3930–3935 (2013).

    Article  CAS  Google Scholar 

  32. Mallapragada, S. K. & Peppas, N. A. Dissolution mechanism of semicrystalline poly(vinyl alcohol) in water. J. Polym. Sci. 34, 1339–1346 (1996).

    Article  CAS  Google Scholar 

  33. Marcano, D. C. et al. Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010).

    Article  CAS  Google Scholar 

  34. Cai, W. et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 321, 1815–1817 (2008).

    Article  CAS  Google Scholar 

  35. Smith, W. & Todorov, I. T. A short description of DL_POLY. Mol. Simul. 32, 935–943 (2006).

    Article  CAS  Google Scholar 

  36. Mayo, S. L., Olafson, B. D. & Goddard, W. A. DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 101, 8897–8909 (1990).

    Article  Google Scholar 

  37. Valiev, M. et al. NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 181, 1477–1489 (2010).

    Article  CAS  Google Scholar 

  38. Humphrey, W., Dalke, A. & Schulten, K. VMD—Visual Molecular Dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  Google Scholar 

  39. Kusalik, P. G. & Svishchev, I. M. The spatial structure in liquid water. Science 265, 1219–1221 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Center of Innovation Program, Global Aqua Innovation Center for Improving Living Standards and Water Sustainability, from the Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Contributions

A.M.-G. designed the experiments, performed FTIR, SEM, Raman spectroscopy and desalination, and wrote the manuscript. R.C.-S. carried out GO synthesis and XPS, and wrote the manuscript. H.M. performed discussion and preliminary DWCNT samples. J.O.-M. performed XRD and wrote the manuscript. T.A. and S.T. performed molecular dynamic simulations. T.F. provided valuable technical assistance. T.H. performed TEM observations. K.T., M.T. and M.E. participated in discussions and wrote the manuscript.

Corresponding authors

Correspondence to Aaron Morelos-Gomez or Morinobu Endo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 4914 kb)

Supplementary Movie 1

Supplementary Movie 1 (MP4 39868 kb)

Supplementary Movie 2

Supplementary Movie 2 (MP4 40210 kb)

Supplementary Movie 3

Supplementary Movie 3 (MP4 38708 kb)

Supplementary Movie 4

Supplementary Movie 4 (MP4 38550 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morelos-Gomez, A., Cruz-Silva, R., Muramatsu, H. et al. Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes. Nature Nanotech 12, 1083–1088 (2017). https://doi.org/10.1038/nnano.2017.160

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.160

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing