Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatially and time-resolved magnetization dynamics driven by spin–orbit torques

Abstract

Current-induced spin–orbit torques are one of the most effective ways to manipulate the magnetization in spintronic devices, and hold promise for fast switching applications in non-volatile memory and logic units. Here, we report the direct observation of spin–orbit-torque-driven magnetization dynamics in Pt/Co/AlOx dots during current pulse injection. Time-resolved X-ray images with 25 nm spatial and 100 ps temporal resolution reveal that switching is achieved within the duration of a subnanosecond current pulse by the fast nucleation of an inverted domain at the edge of the dot and propagation of a tilted domain wall across the dot. The nucleation point is deterministic and alternates between the four dot quadrants depending on the sign of the magnetization, current and external field. Our measurements reveal how the magnetic symmetry is broken by the concerted action of the damping-like and field-like spin–orbit torques and the Dzyaloshinskii–Moriya interaction, and show that reproducible switching events can be obtained for over 1012 reversal cycles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the experimental set-up and sample structure.
Figure 2: Time-resolved magnetization switching.
Figure 3: Evolution of the magnetization during the switching process.
Figure 4: Effect of an external field balancing the field-like torque.
Figure 5: Micromagnetic simulations of the reversal process.
Figure 6: Partial switching induced by subthreshold current pulses.

Similar content being viewed by others

References

  1. Kent, A. D. & Worledge, D. C. A new spin on magnetic memories. Nat. Nanotech. 10, 187–191 (2015).

    Article  CAS  Google Scholar 

  2. Garello, K. et al. Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures. Nat. Nanotech. 8, 587–593 (2013).

    Article  CAS  Google Scholar 

  3. Kim, J. et al. Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO. Nat. Mater. 12, 240–245 (2013).

    Article  CAS  Google Scholar 

  4. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1259 (2015).

    Article  Google Scholar 

  5. Manchon, A. & Zhang, S. Theory of nonequilibrium intrinsic spin torque in a single nanomagnet. Phys. Rev. B 78, 212405 (2008).

    Article  Google Scholar 

  6. Freimuth, F., Blügel, S. & Mokrousov, Y. Direct and inverse spin-orbit torques. Phys. Rev. B 92, 064415 (2015).

    Article  Google Scholar 

  7. Wang, L. et al. Giant room temperature interface spin Hall and inverse spin Hall effects. Phys. Rev. Lett. 116, 196602 (2016).

    Article  Google Scholar 

  8. Amin, V. & Stiles, M. Spin transport at interfaces with spin-orbit coupling: phenomenology. Phys. Rev. B 94, 104420 (2016).

    Article  Google Scholar 

  9. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  CAS  Google Scholar 

  10. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  CAS  Google Scholar 

  11. Garello, K. et al. Ultrafast magnetization switching by spin-orbit torques. Appl. Phys. Lett. 105, 212402 (2014).

    Article  Google Scholar 

  12. Fukami, S., Anekawa, T., Zhang, C. & Ohno, H. A spin–orbit torque switching scheme with collinear magnetic easy axis and current configuration. Nat. Nanotech. 11, 621–625 (2016).

    Article  CAS  Google Scholar 

  13. Ghosh, A., Garello, K., Avci, C. O., Gabureac, M. & Gambardella, P. Interface-enhanced spin-orbit torques and current-induced magnetization switching of Pd/Co/AlOx layers. Phys. Rev. Appl. 7, 014004 (2017).

    Article  Google Scholar 

  14. Yu, G. et al. Magnetization switching through spin-Hall-effect-induced chiral domain wall propagation. Phys. Rev. B 89, 104421 (2014).

    Article  Google Scholar 

  15. Safeer, C. et al. Spin–orbit torque magnetization switching controlled by geometry. Nat. Nanotech. 11, 143–146 (2016).

    Article  CAS  Google Scholar 

  16. Miron, I. M. et al. Fast current-induced domain-wall motion controlled by the Rashba effect. Nat. Mater. 10, 419–423 (2011).

    Article  CAS  Google Scholar 

  17. Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013).

    Article  CAS  Google Scholar 

  18. Ryu, K.-S., Thomas, L., Yang, S.-H. & Parkin, S. Chiral spin torque at magnetic domain walls. Nat. Nanotech. 8, 527–533 (2013).

    Article  CAS  Google Scholar 

  19. Haazen, P. P. J. et al. Domain wall depinning governed by the spin Hall effect. Nat. Mater. 12, 299–303 (2013).

    Article  CAS  Google Scholar 

  20. Cubukcu, M. et al. Spin-orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction. Appl. Phys. Lett. 104, 042406 (2014).

    Article  Google Scholar 

  21. Prenat, G. et al. Ultra-fast and high-reliability SOT-MRAM: from cache replacement to normally-off computing. IEEE Trans. Multi-Scale Comput. Syst. (TMSCS) 2, 49–60 (2016).

    Article  Google Scholar 

  22. Devolder, T. et al. Single-shot time-resolved measurements of nanosecond-scale spin-transfer induced switching: stochastic versus deterministic aspects. Phys. Rev. Lett. 100, 057206 (2008).

    Article  CAS  Google Scholar 

  23. Hahn, C. et al. Time-resolved studies of the spin-transfer reversal mechanism in perpendicularly magnetized magnetic tunnel junctions. Phys. Rev. B 94, 214432 (2016).

    Article  Google Scholar 

  24. Lee, K.-S., Lee, S.-W., Min, B.-C. & Lee, K.-J. Threshold current for switching of a perpendicular magnetic layer induced by spin Hall effect. Appl. Phys. Lett. 102, 112410 (2013).

    Article  Google Scholar 

  25. Park, J., Rowlands, G. E., Lee, O. J., Ralph, D. C. & Buhrman, R. A. Macrospin modeling of sub-ns pulse switching of perpendicularly magnetized free layer via spin-orbit torques for cryogenic memory applications. Appl. Phys. Lett. 105, 102404 (2014).

    Article  Google Scholar 

  26. Zhang, C., Fukami, S., Sato, H., Matsukura, F. & Ohno, H. Spin-orbit torque induced magnetization switching in nano-scale Ta/CoFeB/MgO. Appl. Phys. Lett. 107, 012401 (2015).

    Article  Google Scholar 

  27. Aradhya, S. V., Rowlands, G. E., Oh, J., Ralph, D. C. & Buhrman, R. A. Nanosecond-timescale low energy switching of in-plane magnetic tunnel junctions through dynamic Oersted-field-assisted spin Hall effect. Nano Lett. 16, 5987–5992 (2016).

    Article  CAS  Google Scholar 

  28. Lo Conte, R. et al. Spin-orbit torque-driven magnetization switching and thermal effects studied in Ta\CoFeB\MgO nanowires. Appl. Phys. Lett. 105, 122404 (2014).

    Article  Google Scholar 

  29. Thiaville, A., Rohart, S., Jué, É., Cros, V. & Fert, A. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. Europhys. Lett. 100, 57002 (2012).

    Article  Google Scholar 

  30. Boulle, O. et al. Domain wall tilting in the presence of the Dzyaloshinskii-Moriya interaction in out-of-plane magnetized magnetic nanotracks. Phys. Rev. Lett. 111, 217203 (2013).

    Article  CAS  Google Scholar 

  31. Martinez, E., Emori, S. & Beach, G. S. D. Current-driven domain wall motion along high perpendicular anisotropy multilayers: the role of the Rashba field, the spin Hall effect, and the Dzyaloshinskii-Moriya interaction. Appl. Phys. Lett. 103, 072406 (2013).

    Article  Google Scholar 

  32. Perez, N. et al. Chiral magnetization textures stabilized by the Dzyaloshinskii-Moriya interaction during spin-orbit torque switching. Appl. Phys. Lett. 104, 092403 (2014).

    Article  Google Scholar 

  33. Martinez, E., Emori, S., Perez, N., Torres, L. & Beach, G. S. Current-driven dynamics of Dzyaloshinskii domain walls in the presence of in-plane fields: full micromagnetic and one-dimensional analysis. J. Appl. Phys. 115, 213909 (2014).

    Article  Google Scholar 

  34. Lee, K.-S., Lee, S.-W., Min, B.-C. & Lee, K.-J. Thermally activated switching of perpendicular magnet by spin-orbit spin torque. Appl. Phys. Lett. 104, 072413 (2014).

    Article  Google Scholar 

  35. Legrand, W., Ramaswamy, R., Mishra, R. & Yang, H. Coherent subnanosecond switching of perpendicular magnetization by the field-like spin-orbit torque without an external magnetic field. Phys. Rev. Appl. 3, 064012 (2015).

    Article  Google Scholar 

  36. Lee, O. J. et al. Central role of domain wall depinning for perpendicular magnetization switching driven by spin torque from the spin Hall effect. Phys. Rev. B 89, 024418 (2014).

    Article  Google Scholar 

  37. Finocchio, G., Carpentieri, M., Martinez, E. & Azzerboni, B. Switching of a single ferromagnetic layer driven by spin Hall effect. Appl. Phys. Lett. 102, 212410 (2013).

    Article  Google Scholar 

  38. Mikuszeit, N. et al. Spin-orbit torque driven chiral magnetization reversal in ultrathin nanostructures. Phys. Rev. B 92, 144424 (2015).

    Article  Google Scholar 

  39. Martinez, E. et al. Universal chiral-triggered magnetization switching in confined nanodots. Sci. Rep. 5, 10156 (2015).

    Article  Google Scholar 

  40. Raabe, J. et al. PolLux: a new facility for soft X-ray spectromicroscopy at the Swiss Light Source. Rev. Sci. Instrum. 79, 113704 (2008).

    Article  CAS  Google Scholar 

  41. Pizzini, S. et al. Chirality-induced asymmetric magnetic nucleation in Pt/Co/AlOx ultrathin microstructures. Phys. Rev. Lett. 113, 047203 (2014).

    Article  CAS  Google Scholar 

  42. Belmeguenai, M. et al. Interfacial Dzyaloshinskii-Moriya interaction in perpendicularly magnetized Pt/Co/AlOx ultrathin films measured by Brillouin light spectroscopy. Phys. Rev. B 91, 180405 (2015).

    Article  Google Scholar 

  43. Ryu, K.-S., Thomas, L., Yang, S.-H. & Parkin, S. S. Current induced tilting of domain walls in high velocity motion along perpendicularly magnetized micron-sized Co/Ni/Co racetracks. Appl. Phys. Express 5, 093006 (2012).

    Article  Google Scholar 

  44. Vogel, J. et al. Direct observation of massless domain wall dynamics in nanostripes with perpendicular magnetic anisotropy. Phys. Rev. Lett. 108, 247202 (2012).

    Article  CAS  Google Scholar 

  45. Taniguchi, T. et al. Precise control of magnetic domain wall displacement by a nanosecond current pulse in Co/Ni nanowires. Appl. Phys. Express 8, 073008 (2015).

    Article  Google Scholar 

  46. Avci, C. O. et al. Interplay of spin-orbit torque and thermoelectric effects in ferromagnet/normal-metal bilayers. Phys. Rev. B 90, 224427 (2014).

    Article  Google Scholar 

  47. Donahue, M. J. & Porter, D. G. OOMMF User's Guide, Version 1.0 Interagency Report NISTIR 6376 (National Institute of Standards and Technology, 1999).

  48. Rohart, S. & Thiaville, A. Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction. Phys. Rev. B 88, 184422 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Swiss National Science Foundation (grant numbers 200021-153404 and 200020-172775). Part of this work was performed at the PolLux (X07DA) endstation of the Swiss Light Source, Villigen, Switzerland. The PolLux end station was financed by the German Minister für Bildung und Forschung (BMBF) through contracts 05KS4WE1/6 and 05KS7WE1. We acknowledge fruitful discussions with J. Stöhr and L. Buda-Prejbeanu.

Author information

Authors and Affiliations

Authors

Contributions

M.B., K.G. and P.G. planned the experiments and analysed the data. M.B., M.G. and J.F. fabricated the samples. M.B., K.G., J.M., C.O.A., E.G., C.M., C.S., Y.A., S.F., S.W. and J.R. implemented the current pump/X-ray probe scheme and performed the scanning transmission X-ray microscopy experiments. M.B. carried out the electrical measurements and the micromagnetic simulations. M.B. and P.G. wrote the manuscript. All authors discussed the data and commented on the manuscript.

Corresponding authors

Correspondence to Manuel Baumgartner, Kevin Garello or Pietro Gambardella.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1212 kb)

Supplementary Movie 1

Supplementary Movie 1 (AVI 3958 kb)

Supplementary Movie 2

Supplementary Movie 2 (AVI 4031 kb)

Supplementary Movie 3

Supplementary Movie 3 (AVI 3873 kb)

Supplementary Movie 4

Supplementary Movie 4 (AVI 3602 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baumgartner, M., Garello, K., Mendil, J. et al. Spatially and time-resolved magnetization dynamics driven by spin–orbit torques. Nature Nanotech 12, 980–986 (2017). https://doi.org/10.1038/nnano.2017.151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.151

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing