Zero-power infrared digitizers based on plasmonically enhanced micromechanical photoswitches


State-of-the-art sensors use active electronics to detect and discriminate light1,2,3, sound4,5, vibration6,7 and other signals8,9. They consume power constantly, even when there is no relevant data to be detected, which limits their lifetime and results in high costs of deployment and maintenance for unattended sensor networks. Here we propose a device concept that fundamentally breaks this paradigm—the sensors remain dormant with near-zero power consumption until awakened by a specific physical signature associated with an event of interest. In particular, we demonstrate infrared digitizing sensors that consist of plasmonically enhanced micromechanical photoswitches (PMPs) that selectively harvest the impinging electromagnetic energy in design-defined spectral bands of interest, and use it to create mechanically a conducting channel between two electrical contacts, without the need for any additional power source. Our zero-power digitizing sensor prototypes produce a digitized output bit (that is, a large and sharp off-to-on state transition with an on/off conductance ratio >1012 and subthreshold slope >9 dec nW–1) when exposed to infrared radiation in a specific narrow spectral band (900 nm bandwidth in the mid-infrared) with the intensity above a power threshold of only 500 nW, which is not achievable with any existing photoswitch technologies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Structure of the PMP and working principle.
Figure 2: Absorption properties of the PMPs.
Figure 3: Device response to infrared radiation.


  1. 1

    Koppens, F. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotech. 9, 780–793 (2014).

    CAS  Article  Google Scholar 

  2. 2

    Hui, Y., Gomez-Diaz, J. S., Qian, Z., Alù, A. & Rinaldi, M. Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing. Nat. Commun. 7, 11249 (2016).

    CAS  Article  Google Scholar 

  3. 3

    Qian, Z. et al. Graphene–aluminum nitride NEMS resonant infrared detector. Microsyst. Nanoeng. 2, 16026 (2016).

    CAS  Article  Google Scholar 

  4. 4

    Royer, M., Holmen, J., Wurm, M., Aadland, O. & Glenn, M. ZnO on Si integrated acoustic sensor. Sens. Actuators 4, 357–362 (1983).

    CAS  Article  Google Scholar 

  5. 5

    Lang, C., Fang, J., Shao, H., Ding, X. & Lin, T. High-sensitivity acoustic sensors from nanofibre webs. Nat. Commun. 7, 11108 (2016).

    CAS  Article  Google Scholar 

  6. 6

    Bernstein, J., Miller, R., Kelley, W. & Ward, P. Low-noise MEMS vibration sensor for geophysical applications. J. Microelectromech. Syst. 8, 433–438 (1999).

    Article  Google Scholar 

  7. 7

    Middlemiss, R. et al. Measurement of the Earth tides with a MEMS gravimeter. Nature 531, 614–617 (2016).

    CAS  Article  Google Scholar 

  8. 8

    Zuniga, C., Rinaldi, M., Khamis, S. M., Johnson, A. & Piazza, G. Nanoenabled microelectromechanical sensor for volatile organic chemical detection. Appl. Phys. Lett. 94, 223122 (2009).

    Article  Google Scholar 

  9. 9

    Gong, S. et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 5, 3132 (2014).

    Article  Google Scholar 

  10. 10

    Baeg, K. J., Binda, M., Natali, D., Caironi, M. & Noh, Y. Y. Organic light detectors: photodiodes and phototransistors. Adv. Mater. 25, 4267–4295 (2013).

    CAS  Article  Google Scholar 

  11. 11

    Noh, Y.-Y. et al. High-photosensitivity p-channel organic phototransistors based on a biphenyl end-capped fused bithiophene oligomer. Appl. Phys. Lett. 86, 043501 (2005).

    Article  Google Scholar 

  12. 12

    Shankar, M., Burchett, J. B., Hao, Q., Guenther, B. D. & Brady, D. J. Human-tracking systems using pyroelectric infrared detectors. Opt. Eng. 45, 106401 (2006).

    Article  Google Scholar 

  13. 13

    Texas Instruments. Low-Power PIR Motion Detector with Sub-1 GHz Wireless Connectivity Enabling 10-Year Coin Cell Battery Life (Dallas, 2016)

  14. 14

    Chen, C., Yi, X., Zhao, X. & Xiong, B. Characterization of VO2 based uncooled microbolometer linear array. Sens. Actuators A 90, 212–214 (2001).

    CAS  Article  Google Scholar 

  15. 15

    Rogalski, A. HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phys. 68, 2267–2336 (2005).

    CAS  Article  Google Scholar 

  16. 16

    Robert, P. et al. Low power consumption infrared thermal sensor array for smart detection and thermal imaging applications. Proc. IRS² 2013, 24–27 (2013).

  17. 17

    Zavracky, P. M., Majumder, S. & McGruer, N. E. Micromechanical switches fabricated using nickel surface micromachining. J. Microelectromech. Syst. 6, 3–9 (1997).

    Article  Google Scholar 

  18. 18

    Loh, O. Y. & Espinosa, H. D. Nanoelectromechanical contact switches. Nat. Nanotech. 7, 283–295 (2012).

    CAS  Article  Google Scholar 

  19. 19

    Feng, X., Matheny, M., Zorman, C. A., Mehregany, M. & Roukes, M. Low voltage nanoelectromechanical switches based on silicon carbide nanowires. Nano Lett. 10, 2891–2896 (2010).

    CAS  Article  Google Scholar 

  20. 20

    Lee, J. O. et al. A sub-1-volt nanoelectromechanical switching device. Nat. Nanotech. 8, 36–40 (2013).

    CAS  Article  Google Scholar 

  21. 21

    Zaghloul, U. & Piazza, G. Sub-1-volt piezoelectric nanoelectromechanical relays with millivolt switching capability. IEEE Electron Device Lett. 35, 669–671 (2014).

    CAS  Article  Google Scholar 

  22. 22

    Shavezipur, M. et al. Partitioning electrostatic and mechanical domains in nanoelectromechanical relays. J. Microelectromech. Syst. 24, 592–598 (2015).

    CAS  Article  Google Scholar 

  23. 23

    Datskos, P. G., Rajic, S. & Datskou, I. Photoinduced and thermal stress in silicon microcantilevers. Appl. Phys. Lett. 73, 2319–2321 (1998).

    CAS  Article  Google Scholar 

  24. 24

    Datskos, P., Lavrik, N. & Rajic, S. Performance of uncooled microcantilever thermal detectors. Rev. Sci. Instrum. 75, 1134–1148 (2004).

    CAS  Article  Google Scholar 

  25. 25

    Jones, C. et al. MEMS thermal imager with optical readout. Sens. Actuators A Phys. 155, 47–57 (2009).

    CAS  Article  Google Scholar 

  26. 26

    Ma, D., Garrett, J. L. & Munday, J. N. Quantitative measurement of radiation pressure on a microcantilever in ambient environment. Appl. Phys. Lett. 106, 091107 (2015).

    Article  Google Scholar 

  27. 27

    Engheta, N. Antennas and Propagation Soc. Int. Symp. 2002 392–395 (IEEE, 2002).

    Google Scholar 

  28. 28

    Watts, C. M., Liu, X. & Padilla, W. J. Metamaterial electromagnetic wave absorbers. Adv. Mater. 24, OP98–OP120 (2012).

    CAS  Google Scholar 

  29. 29

    Cui, Y. et al. Plasmonic and metamaterial structures as electromagnetic absorbers. Laser Photon. Rev. 8, 495–520 (2014).

    CAS  Article  Google Scholar 

  30. 30

    Corbeil, J., Lavrik, N., Rajic, S. & Datskos, P. ‘Self-leveling’ uncooled microcantilever thermal detector. Appl. Phys. Lett. 81, 1306–1308 (2002).

    CAS  Article  Google Scholar 

  31. 31

    Nielsen, M. G., Gramotnev, D. K., Pors, A., Albrektsen, O. & Bozhevolnyi, S. I. Continuous layer gap plasmon resonators. Opt. Express 19, 19310–19322 (2011).

    CAS  Article  Google Scholar 

  32. 32

    Senturia, S. D. Microsystem Design Ch. 6.4 (Springer Science & Business Media, 2007).

  33. 33

    Timoshenko, S. Analysis of bi-metal thermostats. JOSA 11, 233–255 (1925).

    CAS  Article  Google Scholar 

  34. 34

    Lobontiu, N. & Garcia, E. Mechanics of Microelectromechanical Systems Ch. 3 (Springer Science & Business Media, 2004).

Download references


The authors thank R. Olsson, R. Bogoslovov and Y. Hui for valuable discussions and the staff of the George J. Kostas Nanoscale Technology and Manufacturing Research Center at Northeastern University and the Center for Nanoscale Systems at Harvard University where the devices were fabricated. This work was supported by DARPA NZERO Program contract no. HR0011-15-2-0048 and partially supported by NSF CAREER award no. ECCS-1350114.

Author information




M.R. conceived the idea and initiated the research; M.R. and Z.Q. designed the device and the experiments; S.K. designed and characterized the infrared absorber; V.R. designed and implemented the experimental set-up; Z.Q. and S.K. fabricated the devices; Z.Q. and V.R. performed the experiments and analysed the data; N.E.M., V.R. and C.C. contributed to the device design; M.R. coordinated and supervised the research. M.R., Z.Q., N.E.M., S.K. and V.R. contributed to the preparation of the manuscript.

Corresponding author

Correspondence to Matteo Rinaldi.

Ethics declarations

Competing interests

A patent application has been filed under the Patent Cooperation Treaty (PCT), application no. PCT/US/16/48083.

Supplementary information

Supplementary information

Supplementary information (PDF 2675 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qian, Z., Kang, S., Rajaram, V. et al. Zero-power infrared digitizers based on plasmonically enhanced micromechanical photoswitches. Nature Nanotech 12, 969–973 (2017).

Download citation

Further reading