Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sulfated glycopeptide nanostructures for multipotent protein activation

Abstract

Biological systems have evolved to utilize numerous proteins with capacity to bind polysaccharides for the purpose of optimizing their function. A well-known subset of these proteins with binding domains for the highly diverse sulfated polysaccharides are important growth factors involved in biological development and tissue repair. We report here on supramolecular sulfated glycopeptide nanostructures, which display a trisulfated monosaccharide on their surfaces and bind five critical proteins with different polysaccharide-binding domains. Binding does not disrupt the filamentous shape of the nanostructures or their internal β-sheet backbone, but must involve accessible adaptive configurations to interact with such different proteins. The glycopeptide nanostructures amplified signalling of bone morphogenetic protein 2 significantly more than the natural sulfated polysaccharide heparin, and promoted regeneration of bone in the spine with a protein dose that is 100-fold lower than that required in the animal model. These highly bioactive nanostructures may enable many therapies in the future involving proteins.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of supramolecular glycopeptide nanostructures.
Figure 2: Supramolecular glycopeptide nanostructures bind heparin-binding proteins.
Figure 3: Structural stability of glycopeptide nanostructures following protein binding.
Figure 4: Effects of glycopeptide nanostructures on GF signalling in vitro in C2C12 cells.
Figure 5: Glycopeptide nanostructures enhance bone formation.

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. Xu, D. & Esko, J. D. Demystifying heparan sulfate-protein interactions. Annu. Rev. Biochem. 83, 129–157 (2014).

    Article  CAS  Google Scholar 

  2. Edwards, I. J. Proteoglycans in prostate cancer. Nat. Rev. Urology 9, 196–206 (2012).

    Article  CAS  Google Scholar 

  3. Hudak, J. E. & Bertozzi, C. R. Glycotherapy: new advances inspire a reemergence of glycans in medicine. Chem. Biol. 21, 16–37 (2014).

    Article  CAS  Google Scholar 

  4. Bramono, D. S. et al. Bone marrow-derived heparan sulfate potentiates the osteogenic activity of bone morphogenetic protein-2 (BMP-2). Bone 50, 954–964 (2012).

    Article  CAS  Google Scholar 

  5. Zhao, B. et al. Heparin potentiates the in vivo ectopic bone formation induced by bone morphogenetic protein-2. J. Biol. Chem. 281, 23246–23253 (2006).

    Article  CAS  Google Scholar 

  6. Sadir, R., Imberty, A., Baleux, F. & Lortat-Jacob, H. Heparan sulfate/heparin oligosaccharides protect stromal cell-derived factor-1 (SDF-1)/CXCL12 against proteolysis induced by CD26/dipeptidyl peptidase IV. J. Biol. Chem. 279, 43854–43860 (2004).

    Article  CAS  Google Scholar 

  7. Lortat-Jacob, H., Baltzer, F. & Grimaud, J. A. Heparin decreases the blood clearance of interferon-γ and increases its activity by limiting the processing of its carboxyl-terminal sequence. J. Biol. Chem. 271, 16139–16143 (1996).

    Article  CAS  Google Scholar 

  8. Capila, I. & Linhardt, R. J. Heparin-protein interactions. Angew. Chem. Int. Ed. 41, 390–412 (2002).

    Article  CAS  Google Scholar 

  9. Perrimon, N. & Bernfield, M. Specificities of heparan sulphate proteoglycans in developmental processes. Nature 404, 725–728 (2000).

    Article  CAS  Google Scholar 

  10. Li, Y. C. et al. Interactions that influence the binding of synthetic heparan sulfate based disaccharides to fibroblast growth factor-2. ACS Chem. Biol. 9, 1712–1717 (2014).

    Article  CAS  Google Scholar 

  11. Ornitz, D. M. & Leder, P. Ligand specificity and heparin dependence of fibroblast growth factor receptors 1 and 3. J. Biol. Chem. 267, 16305–16311 (1992).

    CAS  Google Scholar 

  12. Murali, S. et al. Affinity-selected heparan sulfate for bone repair. Biomaterials 34, 5594–5605 (2013).

    Article  CAS  Google Scholar 

  13. Lever, R. & Page, C. P. Novel drug development opportunities for heparin. Nat. Rev. Drug Discov. 1, 140–148 (2002).

    Article  CAS  Google Scholar 

  14. Baskaran, S., Grande, D., Sun, X.-L., Yayon, A. & Chaikof, E. L. Glycosaminoglycan-mimetic biomaterials. 3. Glycopolymers prepared from alkene-derivatized mono- and disaccharide-based glycomonomers. Bioconjug. Chem. 13, 1309–1313 (2002).

    Article  CAS  Google Scholar 

  15. Huang, M. L., Smith, R. A., Trieger, G. W. & Godula, K. Glycocalyx remodeling with proteoglycan mimetics promotes neural specification in embryonic stem cells. J. Am. Chem. Soc. 136, 10565–10568 (2014).

    Article  CAS  Google Scholar 

  16. Tyler, P. C., Guimond, S. E., Turnbull, J. E. & Zubkova, O. V. Single-entity heparan sulfate glycomimetic clusters for therapeutic applications. Angew. Chem. Int. Ed. 54, 2718–2723 (2015).

    Article  CAS  Google Scholar 

  17. de Paz, J. L., Noti, C., Bohm, F., Werner, S. & Seeberger, P. H. Potentiation of fibroblast growth factor activity by synthetic heparin oligosaccharide glycodendrimers. Chem. Biol. 14, 879–887 (2007).

    Article  CAS  Google Scholar 

  18. Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001).

    Article  CAS  Google Scholar 

  19. Webber, M. J., Appel, E. A., Meijer, E. W. & Langer, R. Supramolecular biomaterials. Nat. Mater. 15, 13–26 (2015).

    Article  Google Scholar 

  20. Kiyonaka, S. et al. Semi-wet peptide/protein array using supramolecular hydrogel. Nat. Mater. 3, 58–64 (2004).

    Article  CAS  Google Scholar 

  21. Müller, M. K. & Brunsveld, L. A supramolecular polymer as a self-assembling polyvalent scaffold. Angew. Chem. Int. Ed. 48, 2921–2924 (2009).

    Article  Google Scholar 

  22. Ustun Yaylaci, S. et al. Supramolecular GAG-like self-assembled glycopeptide nanofibers induce chondrogenesis and cartilage regeneration. Biomacromolecules 17, 679–689 (2016).

    Article  CAS  Google Scholar 

  23. Chabre, Y. M. & Roy, R. Multivalent glycoconjugate syntheses and applications using aromatic scaffolds. Chem. Soc. Rev. 42, 4657–4708 (2013).

    Article  CAS  Google Scholar 

  24. Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002).

    Google Scholar 

  25. Barceloux, D. G. Copper. J. Toxicol. Clin. Toxicol. 37, 217–230 (1999).

    Article  CAS  Google Scholar 

  26. Cui, H. et al. Spontaneous and X-ray-triggered crystallization at long range in self-assembling filament networks. Science 327, 555–559 (2010).

    Article  CAS  Google Scholar 

  27. Ortony, J. H. et al. Internal dynamics of a supramolecular nanofibre. Nat. Mater. 13, 812–816 (2014).

    Article  CAS  Google Scholar 

  28. Newcomb, C. J. et al. Cell death versus cell survival instructed by supramolecular cohesion of nanostructures. Nat. Commun. 5, 3321 (2014).

    Article  Google Scholar 

  29. Paine-Saunders, S., Viviano, B. L., Economides, A. N. & Saunders, S. Heparan sulfate proteoglycans retain Noggin at the cell surface—a potential mechanism for shaping bone morphogenetic protein gradients. J. Biol. Chem. 277, 2089–2096 (2002).

    Article  CAS  Google Scholar 

  30. Silva, G. A. et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303, 1352–1355 (2004).

    Article  CAS  Google Scholar 

  31. Tantakitti, F. et al. Energy landscapes and functions of supramolecular systems. Nat. Mater. 15, 469–476 (2016).

    Article  CAS  Google Scholar 

  32. Katagiri, T. et al. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J. Cell Biol. 127, 1755–1766 (1994).

    Article  CAS  Google Scholar 

  33. Lee, S. S. et al. Gel scaffolds of BMP-2-binding peptide amphiphile nanofibers for spinal arthrodesis. Adv. Healthc. Mater. 4, 131–141 (2015).

    Article  CAS  Google Scholar 

  34. Van Teeffelen, J. W., Brands, J., Stroes, E. S. & & Vink, H. Endothelial glycocalyx: sweet shield of blood vessels. Trends Cardiovasc. Med. 17, 101–105 (2007).

    Article  CAS  Google Scholar 

  35. Fyrner, T. et al. Saccharide-functionalized alkanethiols for fouling-resistant self-assembled monolayers: synthesis, monolayer properties, and antifouling behavior. Langmuir 27, 15034–15047 (2011).

    Article  CAS  Google Scholar 

  36. Bearinger, J. P. et al. Chemisorbed poly(propylene sulphide)-based copolymers resist biomolecular interactions. Nat. Mater. 2, 259–264 (2003).

    Article  CAS  Google Scholar 

  37. Ham, H. O., Park, S. H., Kurutz, J. W., Szleifer, I. G. & Messersmith, P. B. Antifouling glycocalyx-mimetic peptoids. J. Am. Chem. Soc. 135, 13015–13022 (2013).

    Article  CAS  Google Scholar 

  38. Gandhi, N. S. & Mancera, R. L. The structure of glycosaminoglycans and their interactions with proteins. Chem. Biol. Drug Des. 72, 455–482 (2008).

    Article  CAS  Google Scholar 

  39. Ruppert, R., Hoffmann, E. & Sebald, W. Human bone morphogenetic protein 2 contains a heparin-binding site which modifies its biological activity. Eur. J. Biochem. 237, 295–302 (1996).

    Article  CAS  Google Scholar 

  40. Kuo, W. J., Digman, M. A. & Lander, A. D. Heparan sulfate acts as a bone morphogenetic protein coreceptor by facilitating ligand-induced receptor hetero-oligomerization. Mol. Biol. Cell 21, 4028–4041 (2010).

    Article  CAS  Google Scholar 

  41. Groppe, J. et al. Structural basis of BMP signalling inhibition by the cystine knot protein Noggin. Nature 420, 636–642 (2002).

    Article  CAS  Google Scholar 

  42. Bhandari, M. et al. The effects of standard and low molecular weight heparin on bone nodule formation in vitro. Thromb. Haemost. 80, 413–417 (1998).

    Article  CAS  Google Scholar 

  43. Yu, P. B. et al. BMP type I receptor inhibition reduces heterotopic ossification. Nat. Med. 14, 1363–1369 (2008).

    Article  CAS  Google Scholar 

  44. Schlessinger, J. et al. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mole. Cell 6, 743–750 (2000).

    Article  CAS  Google Scholar 

  45. Eming, S. A., Martin, P. & Tomic-Canic, M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci. Transl. Med. 6, 265sr6 (2014).

    Article  Google Scholar 

  46. Jacques, L. B. Heparin: an old drug with a new paradigm. Science 206, 528–533 (1979).

    Article  CAS  Google Scholar 

  47. Petitou, M. & van Boeckel, C. A. A synthetic antithrombin III binding pentasaccharide is now a drug! What comes next? Angew. Chem. Int. Ed. 43, 3118–3133 (2004).

    Article  CAS  Google Scholar 

  48. Simmonds, M. C. et al. Safety and effectiveness of recombinant human bone morphogenetic protein-2 for spinal fusion. Ann. Intern. Med. 158, 877–889 (2013).

    Article  Google Scholar 

  49. Tovar, J. D., Claussen, R. C. & Stupp, S. I. Probing the interior of peptide amphiphile supramolecular aggregates. J. Am. Chem. Soc. 127, 7337–7345 (2005).

    Article  CAS  Google Scholar 

  50. Webber, M. J., Newcomb, C. J., Bitton, R. & Stupp, S. I. Switching of self-assembly in a peptide nanostructure with a specific enzyme. Soft Matter 7, 9665–9672 (2011).

    Article  CAS  Google Scholar 

  51. Gottlieb, H. E., Kotlyar, V. & Nudelman, A. NMR chemical shifts of common laboratory solvents as trace impurities. J. Org. Chem. 62, 7512–7515 (1997).

    Article  CAS  Google Scholar 

  52. Chen, B. et al. Carbohydrate rod conjugates: ternary rod−coil molecules forming complex liquid crystal structures. J. Am. Chem. Soc. 127, 16578–16591 (2005).

    Article  CAS  Google Scholar 

  53. Eklind, K., Gustafsson, R., Tiden, A. K., Norberg, T. & Aberg, P. M. Large-scale synthesis of a Lewis b tetrasaccharide derivative, its acrylamide copolymer, and related di- and trisaccharides for use in adhesion inhibition studies with Helicobacter pylori. J. Carbohyd. Chem. 15, 1161–1178 (1996).

    Article  CAS  Google Scholar 

  54. Chernyak, A., Kononov, L. O. & Kochetkov, N. K. Synthesis of carbohydrate-amino acid conjugates related to the capsular antigen K54 from Escherichia coli O6:K54:H10 and artificial antigens therefrom. Carbohydr. Res. 216, 381–398 (1992).

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by the NIH National Institute of Dental and Craniofacial Research grant 5R01DE015920-10, and also by the Louis A. Simpson & Kimberly Querrey Center for Regenerative Nanomedicine at Northwestern University. The synthesis and structural characterization of this work was supported by the Center for Bio-Inspired Energy Science, an Energy Frontier Research Center funded by DOE, Office of Science, Basic Energy Sciences, under award no. DE-SC0000989. Studies on the dynamics and X-ray scattering were supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, under award no. DE-FG02-00ER45810. The SAXS experiments were performed at the DND-CAT located at Sector 5 of the Advanced Photon Source (APS). Synchrotron X-ray μCT experiments were performed at Sector 2-BM of the APS. We thank the following facilities at Northwestern University: Analytical BioNanotechnology Equipment Core, Peptide Synthesis Core, Center for Advanced Microscopy, Biological Imaging Facility, Keck Biophysics Facility, Integrated Molecular Structure Education and Research Center, Quantitative Bio-element Imaging Center, Center for Advanced Molecular Imaging, and Research Histology and Phenotyping Laboratory. The Biophysics Core Facility at the University of Chicago was also used. Refer to the Supplementary Information for facilities support. S.S.L. thanks the Samsung Scholarship. We are grateful to S. Weigand for assistance with the X-ray scattering, D. Sebald (University of Würzburg, Germany) and A. Lander (University of California-Irvine, USA) for a generous gift of EHBMP-2, to D. Ornitz (Washington University, Saint Louis, USA) for providing the engineered BaF3 cell line, to L. Palmer and K. Sato for helpful discussions, to C. Haney for assisting with μCT scanning and analyses, and to M. Seniw for molecular graphics. Although not used in this Article, we also thank S. Pshenychnyi and Y. Goo in assisting us with recombinant protein production and proteomics.

Author information

Authors and Affiliations

Authors

Contributions

S.S.L., T.F. and S.I.S. conceived the project. S.S.L., T.F., E.S. and Z.A. designed and performed the experiments and analysed the data. F.C., Z.A., D.S.C., J.A.W., R.W.C., R.D.F., M.S.S., K.M.K., A.D.S., J.T.S., C.Y., G.S., S.Z.H., M.T.M. and S.R.S. performed the experiments. Z.Y. assisted in synthesis. S.R.S., W.K.H. and E.L.H. supervised the in vivo study and analysis. S.S.L., T.F., E.L.H. and S.I.S. wrote the manuscript. All authors accepted the final version of the manuscript.

Corresponding author

Correspondence to Samuel I. Stupp.

Ethics declarations

Competing interests

A patent application that covers the technology described in this paper has been filed (PCT/US2016/027292).

Supplementary information

Supplementary information

Supplementary information (PDF 16231 kb)

Supplementary Movie 1

Supplementary Movie 1 (AVI 5797 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Fyrner, T., Chen, F. et al. Sulfated glycopeptide nanostructures for multipotent protein activation. Nature Nanotech 12, 821–829 (2017). https://doi.org/10.1038/nnano.2017.109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.109

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research