Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrafast lithium diffusion in bilayer graphene

Abstract

Solids that simultaneously conduct electrons and ions are key elements for the mass transfer and storage required in battery electrodes. Single-phase materials with a high electronic and high ionic conductivity at room temperature are hard to come by, and therefore multiphase systems with separate ion and electron channels have been put forward instead. Here we report on bilayer graphene as a single-phase mixed conductor that demonstrates Li diffusion faster than in graphite and even surpassing the diffusion of sodium chloride in liquid water. To measure Li diffusion, we have developed an on-chip electrochemical cell architecture in which the redox reaction that forces Li intercalation is localized only at a protrusion of the device so that the graphene bilayer remains unperturbed from the electrolyte during operation. We performed time-dependent Hall measurements across spatially displaced Hall probes to monitor the in-plane Li diffusion kinetics within the graphene bilayer and measured a diffusion coefficient as high as 7×10–5 cm2 s–1.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrochemical device set-up.
Figure 2: Weak localization in bilayer graphene devices at different states of lithiation.
Figure 3: Revealing Li intercalation in between graphene sheets only.
Figure 4: Direct measurement of Li diffusion.

Similar content being viewed by others

References

  1. Chen, C.-C., Fu, L. & Maier, J. Synergistic, ultrafast mass storage and removal in artificial mixed conductors. Nature 536, 159–164 (2016).

    Article  CAS  Google Scholar 

  2. Dresselhaus, M. S. & Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 30, 139–326 (1981).

    Article  CAS  Google Scholar 

  3. Enoki, T., Endo, M. & Suzuki, M. Graphite Intercalation Compounds and Applications (Oxford Univ. Press, 2003).

    Google Scholar 

  4. Yazami, R. & Touzain, P. A reversible graphite–lithium negative electrode for electrochemical generators. J. Power Sources 9, 365–371 (1983).

    Article  CAS  Google Scholar 

  5. Takami, N., Satoh, A., Hara, M. & Ohsaki, T. Structural and kinetic characterization of lithium intercalation into carbon anodes for secondary lithium batteries. J. Electrochem. Soc. 142, 371–379 (1995).

    Article  CAS  Google Scholar 

  6. Levi, M. D. & Aurbach, D. Diffusion coefficients of lithium ions during intercalation into graphite derived from the simultaneous measurements and modeling of electrochemical impedance and potentiostatic intermittent titration characteristics of thin graphite electrodes. J. Phys. Chem. B 101, 4641–4647 (1997).

    Article  CAS  Google Scholar 

  7. Funabiki, A. et al. Impedance study on the electrochemical lithium intercalation into natural graphite powder. J. Electrochem. Soc. 145, 172–178 (1998).

    Article  CAS  Google Scholar 

  8. Yu, P., Popov, B. N., Ritter, J. A. & White, R. E. Determination of the lithium ion diffusion coefficient in graphite. J. Electrochem. Soc. 146, 8–14 (1999).

    Article  CAS  Google Scholar 

  9. Piao, T., Park, S., Doh, C. & Moon, S. Intercalation of lithium ions into graphite electrodes studied by AC impedance measurements. J. Electrochem. Soc. 146, 2794–2798 (1999).

    Article  CAS  Google Scholar 

  10. Ong, T. S. & Yang, H. Lithium intercalation into mechanically milled natural graphite: electrochemical and kinetic characterization. J. Electrochem. Soc. 149, A1–A8 (2002).

    Article  CAS  Google Scholar 

  11. Yang, H., Bang, H. J. & Prakash, J. Evaluation of electrochemical interface area and lithium diffusion coefficient for a composite graphite anode. J. Electrochem. Soc. 151, A1247–A1250 (2004).

    Article  CAS  Google Scholar 

  12. Levi, M. D., Markevich, E. & Aurbach, D. The effect of slow interfacial kinetics on the chronoamperometric response of composite lithiated graphite electrodes and on the calculation of the chemical diffusion coefficient of Li ions in graphite. J. Phys. Chem. B 109, 7420–7427 (2005).

    Article  CAS  Google Scholar 

  13. Persson, K. et al. Lithium diffusion in graphitic carbon. J. Phys. Chem. Lett. 1, 1176–1180 (2010).

    Article  CAS  Google Scholar 

  14. Kaskhedikar, N. A. & Maier, J. Lithium storage in carbon nanostructures. Adv. Mater. 21, 2664–2680 (2009).

    Article  CAS  Google Scholar 

  15. Lee, E. & Persson, K. A. Li absorption and intercalation in single layer graphene and few layer graphene by first principles. Nano Lett. 12, 4624–4628 (2012).

    Article  CAS  Google Scholar 

  16. Fujimoto, T. & Awaga, K. Electric-double-layer field-effect transistors with ionic liquids. Phys. Chem. Chem. Phys. 15, 8983–9006 (2013).

    Article  CAS  Google Scholar 

  17. Ueno, K. et al. Field-induced superconductivity in electric double layer transistors. J. Phys. Soc. Jpn 83, 032001 (2014).

    Article  Google Scholar 

  18. Jeong, J. et al. Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation. Science 339, 1402–1405 (2013).

    Article  CAS  Google Scholar 

  19. Petach, T. A., Lee, M., Davis, R. C., Mehta, A. & Goldhaber-Gordon, D. Mechanism for the large conductance modulation in electrolyte-gated thin gold films. Phys. Rev. B 90, 081108 (2014).

    Article  Google Scholar 

  20. Bao, W. et al. Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation. Nat. Commun. 5, 4224 (2014).

    Article  CAS  Google Scholar 

  21. Yu, Y. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2 . Nat. Nanotech. 10, 270–276 (2015).

    Article  CAS  Google Scholar 

  22. Shi, W. et al. Superconductivity series in transition metal dichalcogenides by ionic gating. Sci. Rep. 5, 12534 (2015).

    Article  CAS  Google Scholar 

  23. Xiong, F. et al. Li intercalation in MoS2: in situ observation of its dynamics and tuning optical and electrical properties. Nano Lett. 15, 6777–6784 (2015).

    Article  CAS  Google Scholar 

  24. Gallagher, P. et al. A high-mobility electronic system at an electrolyte-gated oxide surface. Nat. Commun. 6, 6437 (2015).

    Article  CAS  Google Scholar 

  25. Browning, A. et al. Evaluation of disorder introduced by electrolyte gating through transport measurements in graphene. Appl. Phys. Expr. 9, 065102 (2016).

    Article  Google Scholar 

  26. Ovchinnikov, D. et al. Disorder engineering and conductivity dome in ReS2 with electrolyte gating. Nat. Commun. 7, 12391 (2016).

    Article  CAS  Google Scholar 

  27. Couto, N. J. G. et al. Random strain fluctuations as dominant disorder source for high-quality on-substrate graphene devices. Phys. Rev. X 4, 041019 (2014).

    Google Scholar 

  28. Nair, J. R., Gerbaldi, C., Destro, M., Bongiovanni, R. & Penazzi, N. Methacrylic-based solid polymer electrolyte membranes for lithium-based batteries by a rapid UV-curing process. React. Funct. Polym. 71, 409–416 (2011).

    Article  CAS  Google Scholar 

  29. Cussler, E. L. Diffusion: Mass Transfer in Fluid Systems (Cambridge Univ. Press, 1997).

    Google Scholar 

  30. Winter, M. & Besenhard, J. O. in Handbook of Battery Materials 2nd edn (eds Daniel, C. & Besenhard, J. O.) 433–478 (Wiley, 2011).

    Book  Google Scholar 

  31. Sugawara, K., Kanetani, K., Sato, T. & Takahashi, T. Fabrication of Li-intercalated bilayer graphene. AIP Adv. 1, 022103 (2011).

    Article  Google Scholar 

  32. Holzwarth, N. A. W. in Graphite Intercalation Compounds II (eds Zabel, H. & Solin, S. A.) 7–52 (Springer Series in Materials Science 18, Springer, 1992).

    Book  Google Scholar 

  33. Winter, M., Moeller, K. C. & Besenhard, J. O. in Lithium Batteries: Science and Technology (eds Nazri, G.-A. & Pistoia, G.) 144–194 (Springer, 2003).

    Google Scholar 

  34. Altshuler, B. L., Khmel'nitzkii, D., Larkin, A. I. & Lee, P. A. Magnetoresistance and Hall effect in a disordered two-dimensional electron gas. Phys. Rev. B 22, 5142–5153 (1980).

    Article  CAS  Google Scholar 

  35. Gorbachev, R. V., Tikhonenko, F. V., Mayorov, A. S., Horsell, D. W. & Savchenko, A. K. Weak localization in bilayer graphene. Phys. Rev. Lett. 98, 176805 (2007).

    Article  CAS  Google Scholar 

  36. Kechedzhi, K., Fal'ko, V. I., McCann, E. & Altshuler, B. L. Influence of trigonal warping on interference effects in bilayer graphene. Phys. Rev. Lett. 98, 176806 (2007).

    Article  Google Scholar 

  37. McCann, E. & Koshino, M. The electronic properties of bilayer graphene. Rep. Prog. Phys. 76, 056503 (2013).

    Article  Google Scholar 

  38. Martin, J. et al. Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 4, 144–148 (2008).

    Article  CAS  Google Scholar 

  39. Chandni, U., Henriksen, E. A. & Eisenstein, J. P. Transport in indium-decorated graphene. Phys. Rev. B 91, 245402 (2015).

    Article  Google Scholar 

  40. Mandeltort, L. & Yates, J. T. Rapid atomic Li surface diffusion and intercalation on graphite: a surface science study. J. Phys. Chem. C 116, 24962–24967 (2012).

    Article  CAS  Google Scholar 

  41. Jungblut, B. & Hoinkis, E. Diffusion of lithium in highly oriented pyrolytic graphite at low concentrations and high temperatures. Phys. Rev. B 40, 10810–10815 (1989).

    Article  CAS  Google Scholar 

  42. Magerl, A. in Graphite Intercalation Compounds I (eds Zabel, H. & Solin, S. A.) 221–246 (Springer Series in Materials Science 14, Springer, 1990).

    Book  Google Scholar 

  43. Magerl, A., Zabel, H. & Anderson, I. S. In-plane jump diffusion of Li in LiC6 . Phys. Rev. Lett. 55, 222–225 (1985).

    Article  CAS  Google Scholar 

  44. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  CAS  Google Scholar 

  45. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  46. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotech. 5, 722–726 (2010).

    Article  CAS  Google Scholar 

  47. Bonaccorso, F. et al. Production and processing of graphene and 2D crystals. Mater. Today 15, 564–589 (2012).

    Article  CAS  Google Scholar 

  48. Gonnelli, R. S. et al. Temperature dependence of electric transport in few-layer graphene under large charge doping induced by electrochemical gating. Sci. Rep. 5, 9554 (2015).

    Article  CAS  Google Scholar 

  49. Novoselov, K. S. et al. Unconventional quantum Hall effect and Berry's phase of 2π in bilayer graphene. Nat. Phys. 2, 177–180 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Baden-Württemberg Stiftung as well as the European Union graphene flagship and the Deutsche Forschungsgemeinschaft graphene priority programme (SPP 1459). The authors thank K. v. Klitzing for discussions and support, U. Starke and T. Acartürk for the TOF-SIMS analysis and D. Samuelis for initial discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.K., F.P. and J.H.S. conceived the experiments. M.K. and F.P. fabricated the devices. M.K. performed the experiments. J.P. characterized the electrolyte. J.P. and J.M. contributed to the electrochemical design of the experiments. P.M.O. contributed the theoretical interpretation of the transport experiments. All the authors discussed the results. M.K. and J.H.S. wrote the manuscript and all the authors contributed to it.

Corresponding author

Correspondence to Jurgen H. Smet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 609 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kühne, M., Paolucci, F., Popovic, J. et al. Ultrafast lithium diffusion in bilayer graphene. Nature Nanotech 12, 895–900 (2017). https://doi.org/10.1038/nnano.2017.108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.108

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing