Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution


The small mass and high coherence of nanomechanical resonators render them the ultimate mechanical probe, with applications that range from protein mass spectrometry and magnetic resonance force microscopy to quantum optomechanics. A notorious challenge in these experiments is the thermomechanical noise related to the dissipation through internal or external loss channels. Here we introduce a novel approach to define the nanomechanical modes, which simultaneously provides a strong spatial confinement, full isolation from the substrate and dilution of the resonator material's intrinsic dissipation by five orders of magnitude. It is based on a phononic bandgap structure that localizes the mode but does not impose the boundary conditions of a rigid clamp. The reduced curvature in the highly tensioned silicon nitride resonator enables a mechanical Q > 108 at 1 MHz to yield the highest mechanical Qf products (>1014 Hz) yet reported at room temperature.

The corresponding coherence times approach those of optically trapped dielectric particles. Extrapolation to 4.2 K predicts quanta per milliseconds heating rates, similar to those of trapped ions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Device characterization.
Figure 2: Quality factor statistics.
Figure 3: Scaling of quality factors.
Figure 4: Enhancing the dissipation dilution.
Figure 5: Alternative structures.


  1. 1

    Rugar, D., Budakian, R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).

  2. 2

    Hanay, M. S. et al. Single-protein nanomechanical mass spectrometry in real time. Nat. Nanotechnol. 7, 602–608 (2012).

  3. 3

    Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

  4. 4

    Ekinci, K. L. & Roukes, M. L. Nanoelectromechanical systems. Rev. Sci. Instrum. 76, 061101 (2005).

  5. 5

    Verbridge, S. S., Craighead, H. G. & Parpia, J. M. A megahertz nanomechanical resonator with room temperature quality factor over a million. Appl. Phys. Lett. 92, 013112 (2008).

  6. 6

    Zwickl, B. M. et al. High quality mechanical and optical properties of commercial silicon nitride membranes. Appl. Phys. Lett. 92, 103125 (2008).

  7. 7

    Unterreithmeier, Q. P., Faust, T. & Kotthaus, J. P. Damping of nanomechanical resonators. Phys. Rev. Lett. 105, 027205 (2010).

  8. 8

    Schmid, S., Jensen, K. D., Nielsen, K. H. & Boisen, A. Damping mechanisms in high-Q micro and nanomechanical string resonators. Phys. Rev. B 84, 165307 (2011).

  9. 9

    Yu, P.-L., Purdy, T. P. & Regal, C. A. Control of material damping in high-Q membrane microresonators. Phys. Rev. Lett. 108, 083603 (2012).

  10. 10

    González, G. I. & Saulson, P. R. Brownian motion of a mass suspended by an anelastic wire. J. Acoust. Soc. Am. 96, 207–212 (1994).

  11. 11

    Thompson, J. D. et al. Strong dispersive coupling of a high finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008).

  12. 12

    Purdy, T. P., Peterson, R. W. & Regal, C. A. Observation of radiation pressure shot noise on a macroscopic object. Science 339, 801–804 (2013).

  13. 13

    Wilson, D. J. et al. Measurement-based control of a mechanical oscillator at its thermal decoherence rate. Nature 524, 325–329 (2015).

  14. 14

    Nielsen, W. H. P., Tsaturyan, Y., Møller, C. B., Polzik, E. S. & Schliesser, A. Multimode optomechanical system in the quantum regime. Proc. Natl Acad. Sci. USA 144, 62–66 (2017).

  15. 15

    Villanueva, L. G. & Schmid, S. Evidence of surface loss as ubiquitous limiting damping mechanism in SiN micro- and nanomechanical resonators. Phys. Rev. Lett. 113, 227201 (2014).

  16. 16

    Wilson, D. J., Regal, C. A., Papp, S. B. & Kimble, H. J. Cavity optomechanics with stoichiometric SiN films. Phys. Rev. Lett. 103, 207204 (2009).

  17. 17

    Chakram, S., Patil, Y. S., Chang, L. & Vengalattore, M. Dissipation in ultrahigh quality factor SiN membrane resonators. Phys. Rev. Lett. 112, 127201 (2014).

  18. 18

    Kleckner, D. et al. Optomechanical trampoline resonators. Opt. Express 19, 19708–19716 (2011).

  19. 19

    Reinhardt, C., Müller, T., Bourassa, A. & Sankey, J. C . Ultralow-noise sin trampoline resonators for sensing and optomechanics. Phys. Rev. X 6, 021001 (2016).

  20. 20

    Norte, R., Moura, J. P. & Gröblacher, S. Mechanical resonators for quantum optomechanics experiments at room temperature. Phys. Rev. Lett. 116, 147202 (2016).

  21. 21

    Maldovan, M. Sound and heat revolutions in phononics. Nature 503, 209–217 (2013).

  22. 22

    Wilson-Rae, I. Intrinsic dissipation in nanomechanical resonators due to phonon tunneling. Phys. Rev. B 77, 245418 (2008).

  23. 23

    Schliesser, A., Tsaturyan, Y., Polzik, E. S. & Barg, A. Periodic structuring of two-dimensional membrane and string resonators under high tensile stress to shield localised oscillation modes. US patent pending.

  24. 24

    Braginsky, V. B., Mitrofanov, V. P. & Panov, V. I. Systems with Small Dissipation (Univ. Chicago Press, 1985).

  25. 25

    Ballato, A. & Gualtieri, J. G. Advances in high-Q piezoelectric resonator materials and devices. IEEE Trans. Ultrason. Ferroelec. Freq. Control 41, 834–844 (1994).

  26. 26

    Lee, J. E.-Y. & Seshia, A. A. 5.4-MHz single-crystal silicon wine glass mode disk resonator with quality factor of 2 million. Sensor Actuat. A 156, 28–35 (2009).

  27. 27

    Cumming, A. V. et al. Design and development of the advanced LIGO monolithic fused silica suspension. Class. Quant. Grav. 29, 035003 (2012).

  28. 28

    Ghaffari, S. et al. Quantum limit of quality factor in silicon micro and nano mechanical resonators. Sci. Rep. 3, 1 (2013).

  29. 29

    Mayer Alegre, T. P., Safavi-Naeini, A., Winger, M & Painter, O. Quasi-two-dimensional optomechanical crystals with a complete phononic bandgap. Opt. Express 19, 5658–5669 (2011).

  30. 30

    Tsaturyan, Y. et al. Demonstration of suppressed phonon tunneling losses in phononic bandgap shielded membrane resonators for high-Q optomechanics. Opt. Express 6, 6810–6821 (2013).

  31. 31

    Yu, P.-L. et al. A phononic bandgap shield for high-Q membrane microresonators. Appl. Phys. Lett. 104, 023510 (2014).

  32. 32

    Mohammadi, S. et al. Complete phononic bandgaps and bandgap maps in two-dimensional silicon phononic crystal plates. Electron. Lett. 43, 898–899 (2007).

  33. 33

    Barasheed, A. Z., Müller, T. & Sankey, J. C. Optically defined mechanical geometry. Phys. Rev. A 93, 053811 (2016).

  34. 34

    Ghadimi, A. H., Wilson, D. J. & Kippenberg, T. J. Dissipation engineering of high-stress silicon nitride nanobeams. Preprint at https://arxiv.org/abs/1603.01605 (2016).

  35. 35

    Capelle, T., Tsaturyan, Y., Barg, A. & Schliesser, A. Polarimetric analysis of stress anisotropy in nanomechanical silicon nitride resonators. Appl. Phys. Lett. 110, 181106 (2017).

  36. 36

    Barg, A. et al. Measuring and imaging nanomechanical motion with laser light. Appl. Phys. B 123, 8 (2017).

  37. 37

    Lifshitz, R. & Roukes, M. L. Thermoelastic damping in micro- and nanomechanical systems. Phys. Rev. B 61, 5600–5609 (2000).

  38. 38

    Faust, T., Rieger, J., Seitner, M. J., Kotthaus, J. P. & Weig, E. M. Signatures of two-level defects in the temperature-dependent damping of nanomechanical silicon nitride resonators. Phys. Rev. B 89, 100102 (2014).

  39. 39

    Yuan, M., Cohen, M. A. & Steele, G. A. Silicon nitride membrane resonators at millikelvin temperatures with quality factors exceeding 108. Appl. Phys. Lett. 107, 263501 (2015).

  40. 40

    Laude, V., Achaoui, Y., Benchabane, S. & Khelif, A. Evanescent Bloch waves and the complex band structure of phononic crystals. Phys. Rev. B 80, 092301 (2009).

  41. 41

    Marquardt, F., Chen, J. P., Clerk, A. A. & Girvin, S. M. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007).

  42. 42

    Marshall, W., Simon, Ch., Penrose, R. & Bouwmeester, D. Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003).

  43. 43

    Jain, V. et al. Direct measurement of photon recoil from a levitated nanoparticle. Phys. Rev. Lett. 116, 243601 (2016).

  44. 44

    Turchette, Q. A. et al. Heating of trapped ions from the quantum ground state. Phys. Rev. A 61, 063418 (2000).

  45. 45

    Poggio, M. & Degen, C. L. Force-detected nuclear magnetic resonance: recent advances and future challenges. Nanotechnology 21, 342001 (2010).

  46. 46

    Bagci, T. et al. Optical detection of radio waves through a nanomechanical transducer. Nature 507, 81–85 (2014).

  47. 47

    Hanay, M. S. et al. Inertial imaging with nanomechanical systems. Nat. Nanotechnol. 10, 339–344 (2015).

  48. 48

    Kolkowitz, S. et al. Coherent sensing of a mechanical resonator with a single-spin qubit. Science 335, 1603–1606 (2012).

  49. 49

    Møller, C. B. et al. Quantum back action evading quantum measurement of motion in a negative mass reference frame. Preprint at https://arxiv.org/abs/1608.03613 (2016).

  50. 50

    Kurizki, G. et al. Quantum technologies with hybrid systems. Proc. Natl Acad. Sci. USA. 112, 3866–3873 (2015).

Download references


The authors acknowledge discussions with S. Schmid from TU Wien and H. Tang from Yale University. A. Simonsen and M. B. Kristensen provided support with the imaging and noise measurements, respectively, of some of the devices. This work has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (ERC project Q-CEOM, grant agreement no. 638765), the European Union Seventh Framework programme (ERC project INTERFACE), a starting grant from the Danish Council for Independent Research and the Carlsberg Foundation.

Author information

A.S. conceived the idea and directed the research. A.S. and E.S.P. provided general research supervision. Y.T. designed, simulated and fabricated the samples. Y.T. and A.B. characterized and imaged the samples. A.S. and Y.T. analysed the data, developed the model and wrote the paper. All authors commented on the manuscript.

Correspondence to A. Schliesser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3454 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsaturyan, Y., Barg, A., Polzik, E. et al. Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution. Nature Nanotech 12, 776–783 (2017). https://doi.org/10.1038/nnano.2017.101

Download citation

Further reading