Janus monolayers of transition metal dichalcogenides

Abstract

Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers1,2 or stacked van der Waals heterostructures3,4. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics5,6. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields7,8 or, as theoretically proposed, with an asymmetric out-of-plane structural configuration9. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Synthesis of the Janus MoSSe monolayer.
Figure 2: Energy-dependent X-ray photoelectron spectroscopy.
Figure 3: Out-of-plane dipole probed by angle-resolved SHG.
Figure 4: Characterization of out-of-plane piezoelectricity in the Janus MoSSe monolayer.

References

  1. 1

    Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    CAS  Article  Google Scholar 

  2. 2

    Shimazaki, Y. et al. Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene. Nat. Phys. 11, 1032–1036 (2015).

    CAS  Article  Google Scholar 

  3. 3

    Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    CAS  Article  Google Scholar 

  4. 4

    Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).

    CAS  Article  Google Scholar 

  5. 5

    Ye, Z. et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature 513, 214–218 (2014).

    CAS  Article  Google Scholar 

  6. 6

    Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10, 216–226 (2016).

    CAS  Article  Google Scholar 

  7. 7

    Yuan, H. et al. Zeeman-type spin splitting controlled by an electric field. Nat. Phys. 9, 563–569 (2013).

    CAS  Article  Google Scholar 

  8. 8

    Wu, S. et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2 . Nat. Phys. 9, 149–153 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Cheng, Y. C., Zhu, Z. Y., Tahir, M. & Schwingenschlögl, U. Spin–orbit-induced spin splittings in polar transition metal dichalcogenide monolayers. Europhys. Lett. 102, 57001 (2013).

    Article  Google Scholar 

  10. 10

    Lee, Y.-H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).

    CAS  Article  Google Scholar 

  11. 11

    Shi, Y., Li, H. & Li, L.-J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 44, 2744–2756 (2015).

    CAS  Article  Google Scholar 

  12. 12

    Liu, Y. et al. Layer-by-layer thinning of MoS2 by plasma. ACS Nano 7, 4202–4209 (2013).

    CAS  Article  Google Scholar 

  13. 13

    Su, S.-H. et al. Band gap-tunable molybdenum sulfide selenide monolayer alloy. Small 10, 2589–2594 (2014).

    CAS  Article  Google Scholar 

  14. 14

    Li, H. et al. Lateral growth of composition graded atomic layer MoS2(1–x)Se2x nanosheets. J. Am. Chem. Soc. 137, 5284–5287 (2015).

    CAS  Article  Google Scholar 

  15. 15

    Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotech. 7, 494–498 (2012).

    CAS  Article  Google Scholar 

  16. 16

    Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotech. 7, 490–493 (2012).

    CAS  Article  Google Scholar 

  17. 17

    Yeh, J. J. & Lindau, I. Atomic subshell photoionization cross sections and asymmetry parameters: 1≤Z≤103. At. Data Nucl. Data Tables 32, 1–155 (1985).

    CAS  Article  Google Scholar 

  18. 18

    Seah, M. P. Simple universal curve for the energy-dependent electron attenuation length for all materials. Surf. Interface Anal. 44, 1353–1359 (2012).

    CAS  Article  Google Scholar 

  19. 19

    Corn, R. M. & Higgins, D. A. Optical second harmonic generation as a probe of surface chemistry. Chem. Rev. 94, 107–125 (1994).

    CAS  Article  Google Scholar 

  20. 20

    Kumar, N. et al. Second harmonic microscopy of monolayer MoS2 . Phys. Rev. B 87, 161403 (2013).

    Article  Google Scholar 

  21. 21

    Yin, X. et al. Edge nonlinear optics on a MoS2 atomic monolayer. Science 344, 488–490 (2014).

    CAS  Article  Google Scholar 

  22. 22

    Bune, A. V. et al. Two-dimensional ferroelectric films. Nature 391, 874–877 (1998).

    CAS  Article  Google Scholar 

  23. 23

    da Cunha Rodrigues, G. et al. Strong piezoelectricity in single-layer graphene deposited on SiO2 grating substrates. Nat. Commun. 6, 7572 (2015).

    Article  Google Scholar 

  24. 24

    Rodriguez, B. J., Callahan, C., Kalinin, S. V. & Proksch, R. Dual-frequency resonance-tracking atomic force microscopy. Nanotechnology 18, 475504 (2007).

    Article  Google Scholar 

  25. 25

    Hong, S. et al. High resolution study of domain nucleation and growth during polarization switching in Pb(Zr,Ti)O3 ferroelectric thin film capacitors. J. Appl. Phys. 86, 607–613 (1999).

    CAS  Article  Google Scholar 

  26. 26

    Johann, F., Hoffmann, Á. & Soergel, E. Impact of electrostatic forces in contact-mode scanning force microscopy. Phys. Rev. B 81, 094109 (2010).

    Article  Google Scholar 

  27. 27

    Becher, C. et al. Functional ferroic heterostructures with tunable integral symmetry. Nat. Commun. 5, 4295 (2014).

    CAS  Article  Google Scholar 

  28. 28

    Wang, X. B. et al. The influence of different doping elements on microstructure, piezoelectric coefficient and resistivity of sputtered ZnO film. Appl. Surf. Sci. 253, 1639–1643 (2006).

    CAS  Article  Google Scholar 

  29. 29

    Akselrod, G. M. et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photon. 8, 835–840 (2014).

    CAS  Article  Google Scholar 

  30. 30

    Zhu, H. et al. Observation of piezoelectricity in free-standing monolayer MoS2 . Nat. Nanotech. 10, 151–155 (2015).

    CAS  Article  Google Scholar 

  31. 31

    Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14, 871–882 (2015).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

L.-J.L. acknowledges support from the King Abdullah University of Science and Technology (Saudi Arabia), the Ministry of Science and Technology (MOST), the Taiwan Consortium of Emergent Crystalline Materials (TCECM), Academia Sinica (Taiwan) and Asian Office of Aerospace Research & Development (AOARD) under contract no. FA2386-15-1-0001 (USA). C.-P.C. and M.Y.C. acknowledge support from the Thematic Project of Academia Sinica. M.Y.C. acknowledges support from the National Science Foundation (NSF, grant no. 1542747). X.Z. acknowledges support from the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the US Department of Energy under contract no. DE-AC02-05-CH11231 (van der Waals heterostructures programme, KCWF16) for PFM imaging and analysis; and Samsung Electronics for nonlinear optical characterization. Y.H. and D.A.M. were supported by the Cornell Center for Materials Research, NSF MRSEC (DMR-1120296) and NSF grant no. MRI-1429155. P.Y. acknowledges support from the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under contract no. DE-AC02-05CH11231 (PChem KC3103).

Author information

Affiliations

Authors

Contributions

A.-Y.L., H.Z. and J.X. contributed equally to this work. L.J.L., A.-Y.L. and X.Z. conceived the concept. C.-P.C. and M.-Y.C. provided theoretical support. A.-Y.L., C.-C.C. and C.-W.Y. performed the synthesis. M.-H.C., A.-Y.L., S.D. and D.N. ran the X-ray photoelectron spectroscopy experiments and analysed the results. H.Z. and Y.Y. measured the piezoresponses, supervised by P.Y. Y.H. performed the transmission electron microscopy measurements and analysis, supervised by D.A.M. J.X. ran the SHG experiments and analysed the results. A.-Y.L., H.Z., J.X., C.-P.C, M.-Y.C., L.-J.L. and X.Z. wrote the manuscript. All co-authors discussed the results and commented on the manuscript at all stages.

Corresponding authors

Correspondence to Xiang Zhang or Lain-Jong Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1630 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, AY., Zhu, H., Xiao, J. et al. Janus monolayers of transition metal dichalcogenides. Nature Nanotech 12, 744–749 (2017). https://doi.org/10.1038/nnano.2017.100

Download citation

Further reading

Search

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research