Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dynamical strong coupling and parametric amplification of mechanical modes of graphene drums


Mechanical resonators are ubiquitous in modern information technology. With the possibility of coupling them to electromagnetic and plasmonic modes, they hold promise as the key building blocks in future quantum information technology. Graphene-based resonators are of interest for technological applications due to their high resonant frequencies, multiple mechanical modes and low mass1,2,3,4,5,6,7. The tension-mediated nonlinear coupling between various modes of the resonator can be excited in a controllable manner8,9,10,11. Here we engineer a graphene resonator with large frequency tunability at low temperatures, resulting in a large intermodal coupling strength. We observe the emergence of new eigenmodes and amplification of the coupled modes using red and blue parametric excitation, respectively. We demonstrate that the dynamical intermodal coupling is tunable. A cooperativity of 60 between two resonant modes of 100 MHz is achieved in the strong coupling regime. The ability to dynamically control the coupling between the high-frequency eigenmodes of a mechanical system opens up the possibility of quantum mechanical experiments at low temperatures12,13.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Graphene drum electromechanics in the low-tension regime.
Figure 2: Strong coupling between electromechanical modes.
Figure 3: Normal mode splitting and large cooperativity.
Figure 4: Amplification of motion using blue pump.


  1. Bunch, J. S. et al. Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007).

    Article  CAS  Google Scholar 

  2. Chen, C. et al. Performance of monolayer graphene nanomechanical resonators with electrical readout. Nature Nanotech. 4, 861–867 (2009).

    Article  CAS  Google Scholar 

  3. Singh, V. et al. Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators. Nanotechnology 21, 165204 (2010).

    Article  Google Scholar 

  4. Barton, R. A. et al. Photothermal self-oscillation and laser cooling of graphene optomechanical systems. Nano Lett. 12, 4681–4686 (2012).

    Article  CAS  Google Scholar 

  5. Singh, V. et al. Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity. Nature Nanotech. 9, 820–824 (2014).

    Article  CAS  Google Scholar 

  6. Weber, P., Güttinger, J., Tsioutsios, I., Chang, D. E. & Bachtold, A. Coupling graphene mechanical resonators to superconducting microwave cavities. Nano Lett. 14, 2854–2860 (2014).

    Article  CAS  Google Scholar 

  7. Song, X., Oksanen, M., Li, J., Hakonen, P. & Sillanpää, M. Graphene optomechanics realized at microwave frequencies. Phys. Rev. Lett. 113, 027404 (2014).

    Article  CAS  Google Scholar 

  8. Eriksson, A., Midtvedt, D., Croy, A. & Isacsson, A. Frequency tuning, nonlinearities and mode coupling in circular mechanical graphene resonators. Nanotechnology 24, 395702 (2013).

    Article  CAS  Google Scholar 

  9. Westra, H., Poot, M., Van der Zant, H. & Venstra, W. Nonlinear modal interactions in clamped-clamped mechanical resonators. Phys. Rev. Lett. 105, 117205 (2010).

    Article  CAS  Google Scholar 

  10. Eichler, A., del Álamo Ruiz, M., Plaza, J. & Bachtold, A. Strong coupling between mechanical modes in a nanotube resonator. Phys. Rev. Lett. 109, 025503 (2012).

    Article  CAS  Google Scholar 

  11. Castellanos-Gomez, A., Meerwaldt, H. B., Venstra, W. J., van der Zant, H. S. & Steele, G. A. Strong and tunable mode coupling in carbon nanotube resonators. Phys. Rev. B 86, 041402 (2012).

    Article  Google Scholar 

  12. Santamore, D. H., Doherty, A. C. & Cross, M. C. Quantum nondemolition measurement of Fock states of mesoscopic mechanical oscillators. Phys. Rev. B 70, 144301 (2004).

    Article  Google Scholar 

  13. Mahboob, I., Okamoto, H., Onomitsu, K. & Yamaguchi, H. Two-mode thermal-noise squeezing in an electromechanical resonator. Phys. Rev. Lett. 113, 167203 (2014).

    Article  CAS  Google Scholar 

  14. Teufel, J. D. et al. Circuit cavity electromechanics in the strong-coupling regime. Nature 471, 204–208 (2011).

    Article  CAS  Google Scholar 

  15. Massel, F. et al. Microwave amplification with nanomechanical resonators. Nature 480, 351–354 (2011).

    Article  CAS  Google Scholar 

  16. Wilson-Rae, I., Nooshi, N., Zwerger, W. & Kippenberg, T. J. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007).

    Article  CAS  Google Scholar 

  17. Marquardt, F., Chen, J. P., Clerk, A. A. & Girvin, S. M. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007).

    Article  Google Scholar 

  18. Teufel, J. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).

    Article  CAS  Google Scholar 

  19. Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

    Article  CAS  Google Scholar 

  20. Palomaki, T., Teufel, J., Simmonds, R. & Lehnert, K. Entangling mechanical motion with microwave fields. Science 342, 710–713 (2013).

    Article  CAS  Google Scholar 

  21. Mahboob, I., Nishiguchi, K., Okamoto, H. & Yamaguchi, H. Phonon-cavity electromechanics. Nature Phys. 8, 387–392 (2012).

    Article  CAS  Google Scholar 

  22. Okamoto, H. et al. Coherent phonon manipulation in coupled mechanical resonators. Nature Phys. 9, 480–484 (2013).

    Article  CAS  Google Scholar 

  23. Faust, T. et al. Nonadiabatic dynamics of two strongly coupled nanomechanical resonator modes. Phys. Rev. Lett. 109, 037205 (2012).

    Article  Google Scholar 

  24. Faust, T., Rieger, J., Seitner, M. J., Kotthaus, J. P. & Weig, E. M. Coherent control of a classical nanomechanical two-level system. Nature Phys. 9, 485–488 (2013).

    Article  CAS  Google Scholar 

  25. Kippenberg, T. J. & Vahala, K. J. Cavity opto-mechanics. Opt. Express 15, 17172–17205 (2007).

    Article  Google Scholar 

  26. Liu, C.-H., Kim, I. S. & Lauhon, L. J. Optical control of mechanical mode-coupling within a MoS2 resonator in the strong-coupling regime. Nano Lett. 15, 6727–6731.

  27. Weis, S. et al. Optomechanically induced transparency. Science 330, 1520–1523 (2010).

    Article  CAS  Google Scholar 

  28. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article  Google Scholar 

  29. Rugar, D. & Grütter, P. Mechanical parametric amplification and thermomechanical noise squeezing. Phys. Rev. Lett. 67, 699–702 (1991).

    Article  CAS  Google Scholar 

  30. Eichler, A., Chaste, J., Moser, J. & Bachtold, A. Parametric amplification and self-oscillation in a nanotube mechanical resonator. Nano Lett. 11, 2699–2703 (2011).

    Article  CAS  Google Scholar 

  31. Turner, K. L. et al. Five parametric resonances in a microelectromechanical system. Nature 396, 149–152 (1998).

    Article  CAS  Google Scholar 

  32. Eichler, A. et al. Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nature Nanotech. 6, 339–342 (2011).

    Article  CAS  Google Scholar 

Download references


We thank V. Singh, A. A. Clerk, A. Bhushan and A. Naik for discussions and comments on the manuscript. We acknowledge funding from the Department of Atomic Energy, the Department of Science and Technology (Swarnajayanti Fellowship for M.M.D) of the Government of India and ITC-PAC Grant No. FA5209-15-P-0092.

Author information

Authors and Affiliations



J.P.M performed the experiments, simulations and analysed the data. R.N.P fabricated the devices and contributed to experiments. A.B. contributed to the fabrication and experiments. R.V. provided input for the measurements. J.P.M. and M.M.D co-wrote the manuscript. All authors provided input on the manuscript. M.M.D supervised the project.

Corresponding author

Correspondence to Mandar M. Deshmukh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 994 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathew, J., Patel, R., Borah, A. et al. Dynamical strong coupling and parametric amplification of mechanical modes of graphene drums. Nature Nanotech 11, 747–751 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research