Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Flexible non-volatile optical memory thin-film transistor device with over 256 distinct levels based on an organic bicomponent blend

Abstract

Organic nanomaterials are attracting a great deal of interest for use in flexible electronic applications such as logic circuits, displays and solar cells. These technologies have already demonstrated good performances, but flexible organic memories are yet to deliver on all their promise in terms of volatility, operational voltage, write/erase speed, as well as the number of distinct attainable levels. Here, we report a multilevel non-volatile flexible optical memory thin-film transistor based on a blend of a reference polymer semiconductor, namely poly(3-hexylthiophene), and a photochromic diarylethene, switched with ultraviolet and green light irradiation. A three-terminal device featuring over 256 (8 bit storage) distinct current levels was fabricated, the memory states of which could be switched with 3 ns laser pulses. We also report robustness over 70 write–erase cycles and non-volatility exceeding 500 days. The device was implemented on a flexible polyethylene terephthalate substrate, validating the concept for integration into wearable electronics and smart nanodevices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Electrical characterization of the bottom-gate/bottom-contact P3HT/DAE-Me devices.
Figure 2: Data retention of the memory device.
Figure 3: IDS–time curves (corrected for bias stress) with irradiation of the device with 3 ns laser pulses (313 nm) every 10 s, underlining the ability to behave as a multilevel memory.
Figure 4: Integration of the memory unit onto a flexible PET substrate.

References

  1. 1

    Kelley, T. W. et al. Recent progress in organic electronics: materials, devices, and processes. Chem. Mater. 16, 4413–4422 (2004).

    CAS  Article  Google Scholar 

  2. 2

    Braga, D. & Horowitz, G. High-performance organic field-effect transistors. Adv. Mater. 21, 1473–1486 (2009).

    CAS  Article  Google Scholar 

  3. 3

    Han, S. T., Zhou, Y. & Roy, V. A. L. Towards the development of flexible non-volatile memories. Adv. Mater. 25, 5425–5449 (2013).

    CAS  Article  Google Scholar 

  4. 4

    Benight, S. J., Wang, C., Tok, J. B. H. & Bao, Z. A. Stretchable and self-healing polymers and devices for electronic skin. Prog. Polym. Sci. 38, 1961–1977 (2013).

    CAS  Article  Google Scholar 

  5. 5

    Pang, C., Lee, C. & Suh, K. Y. Recent advances in flexible sensors for wearable and implantable devices. J. Appl. Polym. Sci. 130, 1429–1441 (2013).

    CAS  Article  Google Scholar 

  6. 6

    Baeg, K. J., Caironi, M. & Noh, Y. Y. Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors. Adv. Mater. 25, 4210–4244 (2013).

    CAS  Article  Google Scholar 

  7. 7

    Ahmad, S. Organic semiconductors for device applications: current trends and future prospects. J. Polym. Eng. 34, 279–338 (2014).

    CAS  Article  Google Scholar 

  8. 8

    Chiu, Y. C. et al. High-performance nonvolatile organic transistor memory devices using the electrets of semiconducting blends. ACS Appl. Mater. Inter. 6, 12780–12788 (2014).

    CAS  Article  Google Scholar 

  9. 9

    Smithson, C. S., Wu, Y., Wigglesworth, T. & Zhu, S. A more than six orders of magnitude UV-responsive organic field-effect transistor utilizing a benzothiophene semiconductor and Disperse Red 1 for enhanced charge separation. Adv. Mater. 27, 228–233 (2015).

    CAS  Article  Google Scholar 

  10. 10

    Yoon, S. M. et al. Fully transparent non-volatile memory thin-film transistors using an organic ferroelectric and oxide semiconductor below 200 °C. Adv. Funct. Mater. 20, 921–926 (2010).

    CAS  Article  Google Scholar 

  11. 11

    Radha, B., Sagade, A. A. & Kulkarni, G. U. Metal–organic molecular device for non-volatile memory storage. Appl. Phys. Lett. 105, 083103 (2014).

    Article  Google Scholar 

  12. 12

    Liu, X. H. et al. The effect of oxygen content on the performance of low-voltage organic phototransistor memory. Org. Electron. 15, 1664–1671 (2014).

    CAS  Article  Google Scholar 

  13. 13

    Nougaret, L. et al. Nanoscale design of multifunctional organic layers for low-power high-density memory devices. ACS Nano 8, 3498–3505 (2014).

    CAS  Article  Google Scholar 

  14. 14

    Lee, S. et al. Overcoming the ‘retention vs. voltage’ trade-off in nonvolatile organic memory: Ag nanoparticles covered with dipolar self-assembled monolayers as robust charge storage nodes. Org. Electron. 14, 3260–3266 (2013).

    CAS  Article  Google Scholar 

  15. 15

    Kim, S. J. & Lee, J. S. Flexible organic transistor memory devices. Nano Lett. 10, 2884–2890 (2010).

    CAS  Article  Google Scholar 

  16. 16

    Cosseddu, P., Lai, S., Casula, G., Raffo, L. & Bonfiglio, A. High performance, foldable, organic memories based on ultra-low voltage, thin film transistors. Org. Electron. 15, 3595–3600 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Kim, R. H. et al. Non-volatile organic memory with sub-millimetre bending radius. Nature Commun. 5, 3583 (2014).

    Article  Google Scholar 

  18. 18

    Sekitani, T. et al. Organic nonvolatile memory transistors for flexible sensor arrays. Science 326, 1516–1519 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Liu, X. et al. Advancements in organic nonvolatile memory devices. Chin. Sci. Bull. 56, 3178–3190 (2011).

    Article  Google Scholar 

  20. 20

    Bez, R., Camerlenghi, E., Modelli, A. & Visconti, A. Introduction to flash memory. Proc. IEEE 91, 489–502 (2003).

    Article  Google Scholar 

  21. 21

    Sala, F., Gabrys, R. & Dolecek, L. Dynamic threshold schemes for multi-level non-volatile memories. IEEE Trans. Commun. 61, 2624–2634 (2013).

    Article  Google Scholar 

  22. 22

    Pirovano, A. et al. Reliability study of phase-change nonvolatile memories. IEEE Trans. Dev. Mater. Res. 4, 422–427 (2004).

    Article  Google Scholar 

  23. 23

    Nili, H. et al. Nanoscale resistive switching in amorphous perovskite oxide (a-SrTiO3) memristors. Adv. Funct. Mater. 24, 6741–6750 (2014).

    CAS  Article  Google Scholar 

  24. 24

    Han, Y., Cho, K., Park, S. & Kim, S. Resistive switching characteristics of HfO2-based memory devices on flexible plastics. J. Nanosci. Nanotechnol. 14, 8191–8195 (2014).

    CAS  Article  Google Scholar 

  25. 25

    Zhang, W. B. et al. Thermally-stable resistive switching with a large ON/OFF ratio achieved in poly(triphenylamine). Chem. Commun. 50, 11856–11858 (2014).

    CAS  Article  Google Scholar 

  26. 26

    Heremans, P. et al. Polymer and organic nonvolatile memory devices. Chem. Mater. 23, 341–358 (2011).

    CAS  Article  Google Scholar 

  27. 27

    Chiu, Y. C. et al. High performance nonvolatile transistor memories of pentacene using the electrets of star-branched p-type polymers and their donor–acceptor blends. J. Mater. Chem. C 2, 1436–1446 (2014).

    CAS  Article  Google Scholar 

  28. 28

    Baeg, K. J. et al. High-performance top-gated organic field-effect transistor memory using electrets for monolithic printed flexible NAND flash memory. Adv. Funct. Mater. 22, 2915–2926 (2012).

    CAS  Article  Google Scholar 

  29. 29

    Das, B. C., Pillai, R. G., Wu, Y. L. & McCreery, R. L. Redox-gated three-terminal organic memory devices: effect of composition and environment on performance. ACS Appl. Mater. Inter. 5, 11052–11058 (2013).

    CAS  Article  Google Scholar 

  30. 30

    Kumar, R., Pillai, R. G., Pekas, N., Wu, Y. L. & McCreery, R. L. Spatially resolved Raman spectroelectrochemistry of solid-state polythiophene/viologen memory devices. J. Am. Chem. Soc. 134, 14869–14876 (2012).

    CAS  Article  Google Scholar 

  31. 31

    Chiu, Y. C. et al. Multilevel nonvolatile transistor memories using a star-shaped poly((4-diphenylamino)benzyl methacrylate) gate electret. NPG Asia Mater. 5, e35 (2013).

    CAS  Article  Google Scholar 

  32. 32

    Chou, Y.-H., Chang, H.-C., Liu, C.-L. & Chen, W.-C. Polymeric charge storage electrets for non-volatile organic field effect transistor memory devices. Polym. Chem. 6, 341–352 (2015).

    CAS  Article  Google Scholar 

  33. 33

    Zhou, Y., Han, S. T., Sonar, P. & Roy, V. A. L. Nonvolatile multilevel data storage memory device from controlled ambipolar charge trapping mechanism. Sci. Rep. 3, 2319 (2013).

    Article  Google Scholar 

  34. 34

    Orgiu, E. & Samori, P. Organic electronics marries photochromism: generation of multifunctional interfaces, materials, and devices. Adv. Mater. 26, 1827–1845 (2014).

    CAS  Article  Google Scholar 

  35. 35

    Hayakawa, R., Higashiguchi, K., Matsuda, K., Chikyow, T. & Wakayama, Y. Optically and electrically driven organic thin film transistors with diarylethene photochromic channel layers. ACS Appl. Mater. Inter. 5, 3625–3630 (2013).

    CAS  Article  Google Scholar 

  36. 36

    Matsui, N. & Tsujioka, T. Carrier mobility of photochromic diarylethene amorphous films. Org. Electron. 15, 2264–2269 (2014).

    CAS  Article  Google Scholar 

  37. 37

    Tsujioka, T., Hamada, Y., Shibata, K., Taniguchi, A. & Fuyuki, T. Nondestructive readout of photochromic optical memory using photocurrent detection. Appl. Phys. Lett. 78, 2282–2284 (2001).

    CAS  Article  Google Scholar 

  38. 38

    Andersson, P., Robinson, N. D. & Berggren, M. Switchable charge traps in polymer diodes. Adv. Mater. 17, 1798–1803 (2005).

    CAS  Article  Google Scholar 

  39. 39

    Raimondo, C. et al. Optically switchable organic field-effect transistors based on photoresponsive gold nanoparticles blended with poly(3-hexylthiophene). Proc. Natl Acad. Sci. USA 109, 12375–12380 (2012).

    CAS  Article  Google Scholar 

  40. 40

    Taguchi, M., Nakagawa, T., Nakashima, T., Adachi, C. & Kawai, T. Photo-patternable electroluminescence based on one-way photoisomerization reaction of tetraoxidized triangle terarylenes. Chem. Commun. 49, 6373–6375 (2013).

    CAS  Article  Google Scholar 

  41. 41

    Russew, M. M. & Hecht, S. Photoswitches: from molecules to materials. Adv. Mater. 22, 3348–3360 (2010).

    CAS  Article  Google Scholar 

  42. 42

    Irie, M., Fukaminato, T., Matsuda, K. & Kobatake, S. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev. 114, 12174–12277 (2014).

    CAS  Article  Google Scholar 

  43. 43

    Shallcross, R. C., Korner, P. O., Maibach, E., Kohnen, A. & Meerholz, K. Photochromic diode with a continuum of intermediate states: towards high density multilevel storage. Adv. Mater. 25, 4807–4813 (2013).

    CAS  Article  Google Scholar 

  44. 44

    Korner, P. O., Shallcross, R. C., Maibach, E., Kohnen, A. & Meerholz, K. Optical and electrical multilevel storage in organic memory passive matrix arrays. Org. Electron. 15, 3688–3693 (2014).

    Article  Google Scholar 

  45. 45

    El Gemayel, M. et al. Optically switchable transistors by simple incorporation of photochromic systems into small-molecule semiconducting matrices. Nature Commun. 6, 6330 (2015).

    CAS  Article  Google Scholar 

  46. 46

    Borjesson, K. et al. Optically switchable transistors comprising a hybrid photochromic molecule/n-type organic active layer. J. Mater. Chem. C 3, 4156–4161 (2015).

    CAS  Article  Google Scholar 

  47. 47

    Orgiu, E. et al. Optically switchable transistor via energy-level phototuning in a bicomponent organic semiconductor. Nature Chem. 4, 675–679 (2012).

    CAS  Article  Google Scholar 

  48. 48

    Chua, L. L. et al. General observation of n-type field-effect behaviour in organic semiconductors. Nature 434, 194–199 (2005).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the EC through the MSCA-ITN project iSwitch (GA no. 642196) as well as ERC projects SUPRAFUNCTION (GA-257305) and LIGHT4FUNCTION (GA-308117), the Agence Nationale de la Recherche through the LabEx CSC (ANR-10-LABX-0026_CSC), the International Center for Frontier Research in Chemistry (icFRC) and the German Research Foundation (via SFB 658).

Author information

Affiliations

Authors

Contributions

P.S. and E.O. conceived the experiment and designed the study. M.H. and S.H. designed the DAEs and carried out their synthesis and electrochemical characterization. T.L., E.O., G.B. and E.P. designed and performed the time-response measurements. E.O. designed and T.L. performed the device experiments. T.L., E.O. and P.S. co-wrote the paper. All authors discussed the results and contributed to the interpretation of data, as well as contributing to editing the manuscript.

Corresponding authors

Correspondence to Stefan Hecht, Emanuele Orgiu or Paolo Samorì.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1024 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leydecker, T., Herder, M., Pavlica, E. et al. Flexible non-volatile optical memory thin-film transistor device with over 256 distinct levels based on an organic bicomponent blend. Nature Nanotech 11, 769–775 (2016). https://doi.org/10.1038/nnano.2016.87

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research