Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spin–orbit torque switching without an external field using interlayer exchange coupling

Abstract

Manipulation of the magnetization of a perpendicular ferromagnetic free layer by spin–orbit torque (SOT)1,2,3,4 is an attractive alternative to spin-transfer torque (STT) in oscillators and switches such as magnetic random-access memory (MRAM) where a high current is passed across an ultrathin tunnel barrier5. A small symmetry-breaking bias field is usually needed for deterministic SOT switching but it is impractical to generate the field externally for spintronic applications. Here, we demonstrate robust zero-field SOT switching of a perpendicular CoFe free layer where the symmetry is broken by magnetic coupling to a second in-plane exchange-biased CoFe layer via a nonmagnetic Ru or Pt spacer6. The preferred magnetic state of the free layer is determined by the current polarity and the sign of the interlayer exchange coupling (IEC). Our strategy offers a potentially scalable solution to realize bias-field-free switching that can lead to a generation of SOT devices, combining a high storage density and endurance with a low power consumption.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The thin film device structure, with pinned and free ferromagnetic layers.
Figure 2: Free layer switching, with and without an external field.
Figure 3: Spin Hall magnetoresistance.

Similar content being viewed by others

References

  1. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  CAS  Google Scholar 

  2. Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012).

    Article  Google Scholar 

  3. Liu, L. et al. Spin–torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  CAS  Google Scholar 

  4. Fan, Y. et al. Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nature Mater. 13, 699–704 (2014).

    Article  CAS  Google Scholar 

  5. Ikeda, S. et al. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nature Mater. 9, 721–724 (2010).

    Article  CAS  Google Scholar 

  6. Parkin, S. S. P., More, N. & Roche, K. P. Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. Phys. Rev. Lett. 64, 2304–2307 (1990).

    Article  CAS  Google Scholar 

  7. Mangin, S. et al. Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nature Mater. 5, 210–215 (2006).

    Article  CAS  Google Scholar 

  8. Yu, G. et al. Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields. Nature Nanotech. 9, 548–554 (2014).

    Article  CAS  Google Scholar 

  9. Safeer, C. K. et al. Spin–orbit torque magnetization switching controlled by geometry. Nature Nanotech. 11, 143–146 (2015).

    Article  Google Scholar 

  10. You, L. et al. Switching of perpendicularly polarized nanomagnets with spin orbit torque without an external magnetic field by engineering a tilted anisotropy. Proc. Natl Acad. Sci. USA 112, 10310–10315 (2015).

    Article  CAS  Google Scholar 

  11. Fukami, S., Zhang, C., DuttaGupta, S., Kurenkov, A. & Ohno, H. Magnetization switching by spin–orbit torque in an antiferromagnet–ferromagnet bilayer system. Nature Mater. 15, 535–541 (2016).

    Article  CAS  Google Scholar 

  12. Nogués, J. & Schuller, I. K. Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999).

    Article  Google Scholar 

  13. Parkin, S. S. P. Systematic variation of the strength and oscillation period of indirect magnetic exchange coupling through the 3d, 4d, and 5d transition metals. Phys. Rev. Lett. 67, 3598–3601 (1991).

    Article  CAS  Google Scholar 

  14. Brataas, A., Nazarov, Y. V. & Bauer, G. E. W. Finite-element theory of transport in ferromagnet–normal metal systems. Phys. Rev. Lett. 84, 2481–2484 (2000).

    Article  CAS  Google Scholar 

  15. Lee, O. J. et al. Central role of domain wall depinning for perpendicular magnetization switching driven by spin torque from the spin Hall effect. Phys. Rev. B 89, 024418 (2014).

    Article  Google Scholar 

  16. Haazen, P. P. J. et al. Domain wall depinning governed by the spin Hall effect. Nature Mater. 12, 299–303 (2013).

    Article  CAS  Google Scholar 

  17. Emori, S., Bauer, U., Ahn, S. M., Martinez, E. & Beach, G. S. Current-driven dynamics of chiral ferromagnetic domain walls. Nature Mater. 12, 611–616 (2013).

    Article  CAS  Google Scholar 

  18. Khvalkovskiy, A. V. et al. Matching domain-wall configuration and spin-orbit torques for efficient domain-wall motion. Phys. Rev. B 87, 020402 (2013).

    Article  Google Scholar 

  19. Torrejon, J. et al. Interface control of the magnetic chirality in CoFeB/MgO heterostructures with heavy-metal underlayers. Nature Commun. 5, 4655 (2014).

    Article  CAS  Google Scholar 

  20. Thiyagarajah, N. et al. Giant spontaneous Hall effect in zero-moment Mn2RuxGa. Appl. Phys. Lett. 106, 122402 (2015).

    Article  Google Scholar 

  21. Liu, Z. Y. et al. Oscillatory antiferromagnetic interlayer coupling in Co(4Å)/Pt(tPtÅ)/[Co(4Å)/Pt(6Å)/Co(4Å)]/NiO(20Å) multilayers with perpendicular anisotropy. Phys. Rev. B 77, 012409 (2008).

    Article  Google Scholar 

  22. Chen, Y.-T. et al. Theory of spin Hall magnetoresistance. Phys. Rev. B 87, 144411 (2013).

    Article  Google Scholar 

  23. Nakayama, H. et al. Spin Hall magnetoresistance induced by a nonequilibrium proximity effect. Phys. Rev. Lett. 110, 206601 (2013).

    Article  CAS  Google Scholar 

  24. Althammer, M. et al. Quantitative study of the spin Hall magnetoresistance in ferromagnetic insulator/normal metal hybrids. Phys. Rev. B 87, 224401 (2013).

    Article  Google Scholar 

  25. Avci, C. O. et al. Unidirectional spin Hall magnetoresistance in ferromagnet/normal metal bilayers. Nature Phys. 11, 570–575 (2015).

    Article  CAS  Google Scholar 

  26. Kim, J., Sheng, P., Takahashi, S., Mitani, S. & Hayashi, M. Spin Hall magnetoresistance in metallic bilayers. Phys. Rev. Lett. 116, 097201 (2016).

    Article  Google Scholar 

  27. Kim, J. et al. Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO. Nature Mater. 12, 240–245 (2013).

    Article  CAS  Google Scholar 

  28. Garello, K. et al. Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures. Nature Nanotech. 8, 587–593 (2013).

    Article  CAS  Google Scholar 

  29. Thiaville, A., Rohart, S., Jué, E., Cros, V. & Fert, A. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. Europhys. Lett. 100, 57002 (2012).

    Article  Google Scholar 

  30. Ryu, K.-S., Thomas, L., Yang, S.-H. & Parkin, S. Chiral spin torque at magnetic domain walls. Nature Nanotech. 8, 527–533 (2013).

    Article  CAS  Google Scholar 

  31. Néel, L. Sur un nouveau mode de couplage entre les aimantations de deux couches minces ferromagnétiques. C. R. Hebd. Acad. Sci. 255, 1676–1681 (1962).

    Google Scholar 

  32. Vinai, G. et al. IrMn microstructural effects on exchange bias variability in patterned arrays of IrMn/Co square dots. J. Phys. D 47, 195302 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Science Foundation Ireland through AMBER and by grant no. 13/ERC/I2561. KR acknowledges financial support from the European Community's Seventh Framework Programme IFOX, NMP3-LA-2010-246102. D.B. acknowledges financial support from IRCSET. The authors thank G.Q. Yu, N. Thiyagarajah and J.Y. Chen for fruitful discussions, Q. Chevigny for the assistance in lithography and K. Borisov for some of the magnetometry.

Author information

Authors and Affiliations

Authors

Contributions

Y.C.L. and D.B. contributed equally to this work. Y.C.L. and D.B. designed the experiment and planned the study with the input from K.R. D.B. grew the samples and fabricated the devices. Y.C.L. and D.B. measured the devices. D.B. performed data analysis. Y.C.L. and D.B. wrote the manuscript with advice from J.M.D.C. and P.S.

Corresponding author

Correspondence to Davide Betto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 781 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lau, YC., Betto, D., Rode, K. et al. Spin–orbit torque switching without an external field using interlayer exchange coupling. Nature Nanotech 11, 758–762 (2016). https://doi.org/10.1038/nnano.2016.84

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.84

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing