Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatial metrology of dopants in silicon with exact lattice site precision

Abstract

Scaling of Si-based nanoelectronics has reached the regime where device function is affected not only by the presence of individual dopants, but also by their positions in the crystal. Determination of the precise dopant location is an unsolved problem in applications from channel doping in ultrascaled transistors to quantum information processing. Here, we establish a metrology combining low-temperature scanning tunnelling microscopy (STM) imaging and a comprehensive quantum treatment of the dopant–STM system to pinpoint the exact coordinates of the dopant in the Si crystal. The technique is underpinned by the observation that STM images contain atomic-sized features in ordered patterns that are highly sensitive to the STM tip orbital and the absolute dopant lattice site. The demonstrated ability to determine the locations of P and As dopants to 5 nm depths will provide critical information for the design and optimization of nanoscale devices for classical and quantum computing applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: STM-based metrology for the exact position of subsurface dopants in silicon.
Figure 2: STM tip orbital dependence.
Figure 3: Unique lattice site assignment for the P-1 dopant by depth analysis.
Figure 4: Pinpointing dopant location with single-lattice-site precision.

Similar content being viewed by others

References

  1. Ball, P. Feynman's fancy. Chem. World 58, 58–62 (2009).

    Google Scholar 

  2. Fuechsle, M. et al. A single atom transistor. Nature Nanotech. 7, 242–246 (2012).

    Article  CAS  Google Scholar 

  3. Weber, B. et al. Ohm's law survives to the atomic scale. Science 335, 64–67 (2012).

    Article  CAS  Google Scholar 

  4. Ho, J. et al. Controlled nanoscale doping of semiconductors via molecular monolayers. Nature Mater. 7, 62–67 (2008).

    Article  CAS  Google Scholar 

  5. Prati, E. & Shinada, T. Single-Atom Nanoelectronics (Pan Stanford, 2013).

    Google Scholar 

  6. Pierre, M. et al. Single-donor ionization energies in a nanoscale CMOS channel. Nature Nanotech. 5, 133–137 (2010).

    Article  CAS  Google Scholar 

  7. Sarkar et al. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526, 91–95 (2015).

    Article  CAS  Google Scholar 

  8. Ionescu et al. Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329–337 (2011).

    Article  CAS  Google Scholar 

  9. Hill, C. et al. A surface code quantum computer in silicon. Sci. Adv. 1, e1500707 (2015).

    Article  Google Scholar 

  10. Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

    Article  CAS  Google Scholar 

  11. Saeedi, K. et al. Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28. Science 342, 830–833 (2013).

    Article  CAS  Google Scholar 

  12. Pla, J. et al. High-fidelity readout and control of a nuclear spin qubit in silicon. Nature 496, 334–338 (2013).

    Article  CAS  Google Scholar 

  13. Muhonen, J. T. et al. Storing quantum information for 30 seconds in a nanoelectronic device. Nature Nanotech. 9, 986–991 (2014).

    Article  CAS  Google Scholar 

  14. Weber, B. et al. Spin blockade and exchange in coulomb-confined silicon double quantum dots. Nature Nanotech. 9, 430–435 (2014).

    Article  CAS  Google Scholar 

  15. Tyryshkin, A. et al. Electron spin coherence exceeding seconds in high-purity silicon. Nature Mater. 11, 143–147 (2012).

    Article  CAS  Google Scholar 

  16. Dehollain, J. P. et al. Bell's inequality violation with spins in silicon. Nature Nanotech. 11, 242–246 (2016).

    Article  CAS  Google Scholar 

  17. Laucht, A. et al. Electrically controlling single-spin qubits in a continuous microwave field. Sci. Adv. 1, e1500022 (2015).

    Article  Google Scholar 

  18. Mohiyaddin, F. et al. Noninvasive spatial metrology of single-atom devices. Nano Lett. 13, 1903–1909 (2013).

    Article  CAS  Google Scholar 

  19. Garleff, J. K. et al. Atomically precise impurity identification and modification on the manganese doped GaAs(110) surface with scanning tunneling microscopy. Phys. Rev. B 78, 075313 (2008).

    Article  Google Scholar 

  20. Marczinowski, F. et al. Effect of charge manipulation on scanning tunneling spectra of single Mn acceptors in InAs. Phys. Rev. B 77, 115318 (2008).

    Article  Google Scholar 

  21. Salfi, J. et al. Spatially resolving valley quantum interference of a donor in silicon. Nature Mater. 13, 605–610 (2014).

    Article  CAS  Google Scholar 

  22. Saraiva, A. L. et al. Donor wave functions in Si gauged by STM images. Phys. Rev. B 93, 045303 (2015).

    Article  Google Scholar 

  23. Klymenko, M. V. et al. Multivalley envelope function equations and effective potentials for phosphorus impurity in silicon. Phys. Rev. B 92, 195302 (2015).

    Article  Google Scholar 

  24. Usman, M. et al. Strain and electric field control of hyperfine interactions for donor spin qubits in silicon. Phys. Rev. B 91, 245209 (2015).

    Article  Google Scholar 

  25. Rahman, R. et al. High precision quantum control of single donor spins in silicon. Phys. Rev. Lett. 99, 036403 (2007).

    Article  Google Scholar 

  26. Chen, C. J. Tunneling matrix elements in three-dimensional space: the derivative rule and the sum rule. Phys. Rev. B 42, 8841 (1990).

    Article  CAS  Google Scholar 

  27. Miwa, J. A., Mol, J. A., Salfi, J., Rogge, S. S. & Simmons, M. Y. Transport through a single donor in p-type silicon. Appl. Phys. Lett. 103, 043106 (2013).

    Article  Google Scholar 

  28. Keizer, J. G. et al. The impact of dopant segregation on the maximum carrier density in Si:P multilayers. ACS Nano 9, 7080–7084 (2015).

    Article  CAS  Google Scholar 

  29. Voisin, B., Salfi, J., Bocquel, J., Rahman, R. & Rogge, S. Spatially resolved resonant tunneling on single atoms in silicon. J. Phys. Condens. Matter 27, 154203 (2015).

    Article  CAS  Google Scholar 

  30. Boykin, T. B., Klimeck, G. & Oyafuso, F. Valence band effective-mass expressions in the sp3d5s* empirical tight-binding model applied to a Si and Ge parametrization. Phys. Rev. B 69, 115201 (2004).

    Article  Google Scholar 

  31. Usman, M. et al. Donor hyperfine Stark shift and the role of central-cell corrections in tight-binding theory. J. Phys. Condens. Matter 27, 154207 (2015).

    Article  Google Scholar 

  32. Craig, B. I. & Smith, P. V. The structure of the Si(100)2 × 1: H surface. Surf. Sci. 226, L55–L58 (1990).

    Article  CAS  Google Scholar 

  33. Lee, S., Oyafuso, F., von Allmen, P. & Klimeck, G. Boundary conditions for the electronic structure of finite-extent embedded semiconductor nanostructures. Phys. Rev. B 69, 045316 (2004).

    Article  Google Scholar 

  34. Bardeen, J. Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57 (1961).

    Article  CAS  Google Scholar 

  35. Slater, J. C. Atomic shielding constants. Phys. Rev. 36, 57 (1930).

    Article  CAS  Google Scholar 

  36. Chaika, A. N. et al. Selecting the tip electron orbital for scanning tunneling microscopy imaging with sub-angstrom lateral resolution. Eur. Phys. Lett. 92, 46003 (2010).

    Article  Google Scholar 

  37. Teobaldi, G., Inami, E., Kanasaki, J., Tanimura, K. & Shluger, A. L. Role of applied bias and tip electronic structure in the scanning tunneling microscopy imaging of highly oriented pyrolytic graphite. Phys. Rev. B 85, 085433 (2012).

    Article  Google Scholar 

  38. Rahman, R. et al. Engineered valley–orbit splittings in quantum-confined nanostructures in silicon. Phys. Rev. B 83, 195323 (2011).

    Article  Google Scholar 

  39. Salfi, J. et al. Quantum simulation with dopant atoms in a semiconductor. Nature Commun. 7, 11342 (2016).

    Article  CAS  Google Scholar 

  40. Mol, J. A., Salfi, J., Miwa, J. A., Simmons, M. Y. & Rogge, S. S. Interplay between quantum confinement and dielectric mismatch for ultrashallow dopants. Phys. Rev. B 87, 245417 (2013).

    Article  Google Scholar 

  41. Averin, D., Korotkov, A. & Likharev, K. Theory of single-electron charging of quantum wells and dots. Phys. Rev. B 44, 6199–6211 (1991).

    Article  CAS  Google Scholar 

  42. Pitters, J. L., Piva, P. G. & Wolkow, R. A. Dopant depletion in the near surface region of thermally prepared silicon (100) in UHV. J. Vac. Sci. Technol. B 30, 021806 (2012).

    Article  Google Scholar 

  43. Lee, D.-H. & Gupta, J. A. Tunable field control over the binding energy of single dopants by a charged vacancy in GaAs. Science 330, 1807–1810 (2010).

    Article  CAS  Google Scholar 

  44. Teichmann, K. et al. Controlled charge switching on a single donor with a scanning tunneling microscope. Phys. Rev. Lett. 101, 076103 (2008).

    Article  CAS  Google Scholar 

  45. Ahmed, S. et al. in Encyclopedia of Complexity and Systems Science (ed. Meyers, R.) 5745–5783 (Springer, 2009).

    Book  Google Scholar 

  46. Klimeck, G. et al. Atomistic simulation of realistically sized nanodevices using NEMO 3-D—part II: Models and benchmarks. IEEE Trans. Electron. Dev. 54, 2090–2099 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is funded by the Australian Research Council Center of Excellence for Quantum Computation and Communication Technology (CE110001027) and in part by the US Army Research Office (W911NF-08-1-0527). M.Y.S. acknowledges an ARC Laureate Fellowship. This work is supported by the European Commission Future and Emerging Technologies Proactive Project MULTI (317707). Computational resources are acknowledged from NCN/Nanohub. M.U. thanks C. Hill and V. Perunicic for discussions.

Author information

Authors and Affiliations

Authors

Contributions

L.C.L.H. and M.U. formulated the theoretical framework for the metrology scheme, including tight-binding calculations of the STM images with generic tip orbitals with input from J.S. M.U. performed the theoretical calculations. J.B., J.S., B.V., M.Y.S. and S.R. designed and conducted the STM measurements. L.C.L.H. and M.U. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to M. Usman or L. C. L. Hollenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2556 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usman, M., Bocquel, J., Salfi, J. et al. Spatial metrology of dopants in silicon with exact lattice site precision. Nature Nanotech 11, 763–768 (2016). https://doi.org/10.1038/nnano.2016.83

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.83

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing