Abstract
Artificial neuromorphic systems based on populations of spiking neurons are an indispensable tool in understanding the human brain and in constructing neuromimetic computational systems. To reach areal and power efficiencies comparable to those seen in biological systems, electroionics-based and phase-change-based memristive devices have been explored as nanoscale counterparts of synapses. However, progress on scalable realizations of neurons has so far been limited. Here, we show that chalcogenide-based phase-change materials can be used to create an artificial neuron in which the membrane potential is represented by the phase configuration of the nanoscale phase-change device. By exploiting the physics of reversible amorphous-to-crystal phase transitions, we show that the temporal integration of postsynaptic potentials can be achieved on a nanosecond timescale. Moreover, we show that this is inherently stochastic because of the melt-quench-induced reconfiguration of the atomic structure occurring when the neuron is reset. We demonstrate the use of these phase-change neurons, and their populations, in the detection of temporal correlations in parallel data streams and in sub-Nyquist representation of high-bandwidth signals.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A. & Hudspeth, A. J. Principles of Neural Science (McGraw-Hill, 2000).
Mead, C. Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636 (1990).
Sterratt, D., Graham, B. P., Gillies, A. & Willshaw, D. J. Principles of Computational Modelling in Neuroscience (Cambridge Univ. Press, 2011).
Gerstner, W., Kistler, W. M., Naud, R. & Paninski, L. Neuronal Dynamics (Cambridge Univ. Press, 2014).
Indiveri, G., Chicca, E. & Douglas, R. A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans. Neural Networks 17, 211–221 (2006).
Schemmel, J., Fieres, J. & Meier, K. Wafer-scale integration of analog neural networks. Proc. Int. Joint Conf. Neural Networks 431–438 (2008).
Indiveri, G. et al. Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 1–23 (2011).
Choudhary, S. et al. Silicon neurons that compute. Lect. Notes Comput. Sci. 7552, 121–128 (2012).
Merolla, P. a. et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668–673 (2014).
Indiveri, G., Linares-Barranco, B., Legenstein, R., Deligeorgis, G. & Prodromakis, T. Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology 24, 384010 (2013).
Gentet, L. J., Stuart, G. J. & Clements, J. D. Direct measurement of specific membrane capacitance in neurons. Biophys. J. 79, 314–320 (2000).
Averbeck, B. B., Latham, P. E. & Pouget, A. Neural correlations, population coding and computation. Nature Rev. Neurosci. 7, 358–366 (2006).
Maass, W. Noise as a resource for computation and learning in networks of spiking neurons. Proc. IEEE 102, 860–880 (2014).
Borst, A. & Theunissen, F. Information theory and neural coding. Nature Neurosci. 2, 947–957 (1999).
Pouget, A., Dayan, P., Zemel, R. & House, A. Information processing with population codes. Nature Rev. Neurosci. 1, 125–132 (2000).
Modha, D. S. et al. Cognitive computing. Commun. ACM 54, 62–71 (2011).
Chua, L. Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011).
Ohno, T. et al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nature Mater. 10, 591–595 (2011).
Kuzum, D., Jeyasingh, R. G. D., Lee, B. & Wong, H. S. P. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 12, 2179–2186 (2012).
Burr, G. W. et al. Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element. IEEE Trans. Electron Dev. 62, 3498–3507 (2015).
Ovshinsky, S. R. Analog neurons and neurosynaptic networks. US patent 6,999,953 B2 (2006).
Wright, C. D., Liu, Y., Kohary, K. I., Aziz, M. M. & Hicken, R. J. Arithmetic and biologically-inspired computing using phase-change materials. Adv. Mater. 23, 3408–3413 (2011).
Pickett, M. D., Medeiros-Ribeiro, G. & Williams, R. S. A scalable neuristor built with Mott memristors. Nature Mater. 12, 114–117 (2013).
Burr, G. W. et al. Phase change memory technology. J. Vac. Sci. Technol. B 28, 223 (2010).
Xiong, F., Liao, A. D., Estrada, D. & Pop, E. Low-power switching of phase-change materials with carbon nanotube electrodes. Science 332, 568–570 (2011).
Sebastian, A., Le Gallo, M. & Krebs, D. Crystal growth within a phase change memory cell. Nature Commun. 5, 4314 (2014).
Breitwisch, M. et al. Novel lithography-independent pore phase change memory. Proc. IEEE Symp. VLSI Technol. 100–101 (2007).
Song, S., Miller, K. D. & Abbott, L. F. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neurosci. 3, 919–926 (2000).
Abbott, L. F. & Nelson, S. B. Synaptic plasticity taming the beast. Nature Neurosci. 3, 1178–1183 (2000).
Gütig, R., Aharonov, R., Rotter, S. & Sompolinsky, H. Learning input correlations through nonlinear temporally asymmetric Hebbian plasticity. J. Neurosci. 23, 3697–3714 (2003).
Zipoli, F., Krebs, D. & Curioni, A. Structural origin of resistance drift in amorphous GeTe. Phys. Rev. B 93, 115201 (2016).
Lee, B. S. et al. Distribution of nanoscale nuclei in the amorphous dome of a phase change random access memory. Appl. Phys. Lett. 104, 071907 (2014).
Kalb, J., Spaepen, F. & Wuttig, M. Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys. Appl. Phys. Lett. 84, 5240–5242 (2004).
Senkader, S. & Wright, C. D. Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices. J. Appl. Phys. 95, 504–511 (2004).
Mishali, M. & Eldar, Y. C. Sub-Nyquist sampling bridging theory and practice. IEEE Signal Process. Mag. 28, 98–124 (2011).
Liu, S. C. & Delbruck, T. Neuromorphic sensory systems. Curr. Opin. Neurobiol. 20, 288–295 (2010).
Corradi, F., Superiore, I., You, H., Giulioni, M. & Indiveri, G. Decision making and perceptual bistability in spike-based neuromorphic VLSI systems. Proc. IEEE Int. Symp. Circuits Syst. 2708–2711 (2015).
Pecevski, D., Buesing, L. & Maass, W. Probabilistic inference in general graphical models through sampling in stochastic networks of spiking neurons. PLoS Comput. Biol. 7, e1002294 (2011).
Bollen, J., Mao, H. & Zeng, X. Twitter mood predicts the stock market. J. Comput. Sci. 2, 1–8 (2011).
Perera, C., Zaslavsky, A., Christen, P. & Georgakopoulos, D. Context aware computing for the internet of things—a survey. IEEE Commun. Surv. Tutorials 16, 414–454 (2014).
Neftci, E. et al. Synthesizing cognition in neuromorphic electronic systems. Proc. Natl Acad. Sci. USA 110, E3468–E3476 (2013).
Izhikevich, E. M. Which model to use for cortical spiking neurons? IEEE Trans. Neural Networks 15, 1063–1070 (2004).
Marder, E. & Goaillard, J.-M. Variability, compensation and homeostasis in neuron and network function. Nature Rev. Neurosci. 7, 563–574 (2006).
Al-Shedivat, M., Naous, R., Cauwenberghs, G. & Salama, K. N. Memristors empower spiking neurons with stochasticity. IEEE J. Emerg. Sel. Top. Circ. Syst. 5, 242–253 (2015).
Gaba, S., Sheridan, P., Zhou, J., Choi, S. & Lu, W. Stochastic memristive devices for computing and neuromorphic applications. Nanoscale 5, 5872–5878 (2013).
Vincent, A. F. et al. Spin-transfer torque magnetic memory as a stochastic memristive synapse. IEEE Trans. Biomed. Circ. Syst. 1, 1074–1077 (2014).
Ríos, C. et al. Integrated all-photonic non-volatile multi-level memory. Nature Photon. 9, 725–732 (2015).
Di Ventra, M. & Pershin, Y. V. The parallel approach. Nature Phys. 9, 200–202 (2013).
Sebastian, A., Krebs, D., Le Gallo, M., Pozidis, H. & Eleftheriou, E. A collective relaxation model for resistance drift in phase change memory cells. IEEE Int. Rel. Phys. Symp. Proc. MY.5.1–MY.5.6 (2015).
Acknowledgements
The authors thank F. Zipoli for the molecular dynamics simulations, L. Kull and M. Stanisavljevic for the electrical circuit design and simulations, W. W. Koelmans, S. Wozniak and G. Cherubini for discussions and C. Bolliger for help with preparation of the manuscript.
Author information
Authors and Affiliations
Contributions
T.T., A.S., A.P. and E.E. conceived the idea of stochastic phase-change neurons. T.T., M.L. and A.P. performed the experiments. All authors contributed to the analysis and interpretation of results. T.T. and A.S. co-wrote the manuscript based on the input from all authors. E.E. supervised the work.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 2094 kb)
Rights and permissions
About this article
Cite this article
Tuma, T., Pantazi, A., Le Gallo, M. et al. Stochastic phase-change neurons. Nature Nanotech 11, 693–699 (2016). https://doi.org/10.1038/nnano.2016.70
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nnano.2016.70
This article is cited by
-
Low power nanoscale S-FED based single ended sense amplifier applied in integrate and fire neuron circuit
Scientific Reports (2024)
-
Spike frequency adaptation: bridging neural models and neuromorphic applications
Communications Engineering (2024)
-
VO2 memristor-based frequency converter with in-situ synthesize and mix for wireless internet-of-things
Nature Communications (2024)
-
Chalcogenide Ovonic Threshold Switching Selector
Nano-Micro Letters (2024)
-
Generative complex networks within a dynamic memristor with intrinsic variability
Nature Communications (2023)