Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor


High-spatial-resolution magnetic imaging has driven important developments in fields ranging from materials science to biology. However, to uncover finer details approaching the nanoscale with greater sensitivity requires the development of a radically new sensor technology. The nitrogen–vacancy (NV) defect in diamond has emerged as a promising candidate for such a sensor on the basis of its atomic size and quantum-limited sensing capabilities. It has remained an outstanding challenge to implement the NV centre as a nanoscale scanning magnetic probe at cryogenic temperatures, however, where many solid-state systems exhibit non-trivial magnetic order. Here, we present NV magnetic imaging down to 6 K with 3 μT Hz–1/2 field sensitivity, and use the technique to image vortices in the iron pnictide superconductor BaFe2(As0.7P0.3)2 with critical temperature Tc = 30 K. The expansion of NV-based magnetic imaging to cryogenic temperatures will enable future studies of previously inaccessible nanoscale magnetism in condensed-matter systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Cryogenic NV scanning probe magnetometry.
Figure 2: Single-crystal diamond AFM probes.
Figure 3: Comparison of magnetic imaging protocols.
Figure 4: High-spatial-resolution magnetic imaging at T = 6 K.
Figure 5: NV magnetometry of vortices in the iron pnictide superconductor BaFe2(As0.7P0.3)2 at T = 6 K.


  1. 1

    Lake, B. et al. Spins in the vortices of a high-temperature superconductor. Science 291, 1759–1762 (2001).

    CAS  Article  Google Scholar 

  2. 2

    Brinkman, A. et al. Magnetic effects at the interface between non-magnetic oxides. Nature Mater. 6, 493–496 (2007).

    CAS  Article  Google Scholar 

  3. 3

    Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nature Nanotech. 8, 899–911 (2013).

    CAS  Article  Google Scholar 

  4. 4

    Muhlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Milde, P. et al. Unwinding of a skyrmion lattice by magnetic monopoles. Science 340, 1076–1080 (2013).

    CAS  Article  Google Scholar 

  6. 6

    Kalisky, B. et al. Critical thickness for ferromagnetism in LaAlO3/SrTiO3 heterostructures. Nature Commun. 3, 922 (2012).

    Article  Google Scholar 

  7. 7

    Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    CAS  Article  Google Scholar 

  8. 8

    Christianson, A. D. et al. Unconventional superconductivity in Ba0.6K0.4Fe2As2 from inelastic neutron scattering. Nature 456, 930–932 (2008).

    CAS  Article  Google Scholar 

  9. 9

    Vasyukov, D. et al. A scanning superconducting quantum interference device with single electron spin sensitivity. Nature Nanotech. 8, 639–644 (2013).

    CAS  Article  Google Scholar 

  10. 10

    Van der Sar, T. et al. Decoherence-protected quantum gates for a hybrid solid-state spin register. Nature 484, 82–86 (2012).

    CAS  Article  Google Scholar 

  11. 11

    Buckley, B. B. et al. Spin-light coherence for single-spin measurement and control in diamond. Science 330, 1212–1215 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Neumann, P. et al. Single-shot readout of a single nuclear spin. Science 329, 542–544 (2010).

    CAS  Article  Google Scholar 

  14. 14

    Faraon, A. et al. Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity. Nature Photon. 5, 301–305 (2011).

    CAS  Article  Google Scholar 

  15. 15

    Toyli, D. M., de las Casas, C. F., Christle, D. J., Dobrovitski, V. V. & Awschalom, D. D. Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond. Proc. Natl Acad. Sci. USA 110, 8417–8421 (2013).

    CAS  Article  Google Scholar 

  16. 16

    Dolde, F. et al. Electric-field sensing using single diamond spins. Nature Phys. 7, 459–463 (2011).

    CAS  Article  Google Scholar 

  17. 17

    Staudacher, T. et al. Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume. Science 339, 561–563 (2013).

    CAS  Article  Google Scholar 

  18. 18

    Mamin, H. J. et al. Nanoscale nuclear magnetic resonance with a nitrogen vacancy spin sensor. Science 339, 557–560 (2013).

    CAS  Article  Google Scholar 

  19. 19

    Ovartchaiyapong, P., Lee, K. W., Myers, B. A. & Jayich, A. C. B. Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator. Nature Commun. 5, 4429 (2014).

    CAS  Article  Google Scholar 

  20. 20

    Rondin, L. et al. Magnetometry with nitrogen–vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014).

    CAS  Article  Google Scholar 

  21. 21

    Chernobrod, B. M. & Berman, G. P. Spin microscope based on optically detected magnetic resonance. J. Appl. Phys. 97, 014903 (2005).

    Article  Google Scholar 

  22. 22

    Degen, C. L. Scanning magnetic field microscope with a diamond single spin sensor. Appl. Phys. Lett. 92, 243111 (2008).

    Article  Google Scholar 

  23. 23

    Taylor, J. M. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Phys. 4, 810–816 (2008).

    CAS  Article  Google Scholar 

  24. 24

    Pelliccione, M., Myers, B. A., Pascal, L. M. A., Das, A. & Bleszynski Jayich, A. C. Two-dimensional nanoscale imaging of gadolinium spins via scanning probe relaxometry with a single spin in diamond. Phys. Rev. Appl. 2, 054014 (2014).

    Article  Google Scholar 

  25. 25

    Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    CAS  Article  Google Scholar 

  26. 26

    Maletinsky, P. et al. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nature Nanotech. 7, 320–324 (2012).

    CAS  Article  Google Scholar 

  27. 27

    Grinolds, M. S. et al. Nanoscale magnetic imaging of a single electron spin under ambient conditions. Nature Phys. 9, 215–219 (2013).

    CAS  Article  Google Scholar 

  28. 28

    Rondin, L. et al. Stray-field imaging of magnetic vortices with a single diamond spin. Nature Commun. 4, 2279 (2013).

    CAS  Article  Google Scholar 

  29. 29

    Tetienne, J.-P. et al. Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope. Science 344, 1366–1369 (2014).

    CAS  Article  Google Scholar 

  30. 30

    Toyli, D. M. et al. Measurement and control of single nitrogen-vacancy center spins above 600 K. Phys. Rev. X 2, 031001 (2012).

    Google Scholar 

  31. 31

    Loretz, M., Pezzagna, S., Meijer, J. & Degen, C. L. Nanoscale nuclear magnetic resonance with a 1.9-nm-deep nitrogen-vacancy sensor. Appl. Phys. Lett. 104, 033102 (2014). .

    Article  Google Scholar 

  32. 32

    Favaro de Oliveira, F. et al. Effect of low-damage inductively coupled plasma on shallow nitrogen-vacancy centers in diamond. Appl. Phys. Lett. 107, 073107 (2015).

    Article  Google Scholar 

  33. 33

    Pelliccione, M., Sciambi, A., Bartel, J., Keller, A. J. & Goldhaber-Gordon, D. Design of a scanning gate microscope for mesoscopic electron systems in a cryogen-free dilution refrigerator. Rev. Sci. Instrum. 84, 033703 (2013).

    CAS  Article  Google Scholar 

  34. 34

    Ovartchaiyapong, P., Pascal, L. M. A., Myers, B. A., Lauria, P. & Bleszynski Jayich, A. C. High quality factor single-crystal diamond mechanical resonators. Appl. Phys. Lett. 101, 163505 (2012).

    Article  Google Scholar 

  35. 35

    Hausmann, B. J. M. et al. Single-color centers implanted in diamond nanostructures. New J. Phys. 13, 045004 (2011).

    Article  Google Scholar 

  36. 36

    Meijer, J. et al. Generation of single color centers by focused nitrogen implantation. Appl. Phys. Lett. 87, 261909 (2005).

    Article  Google Scholar 

  37. 37

    Luan, L. et al. Decoherence imaging of spin ensembles using a scanning single-electron spin in diamond. Sci. Rep. 5 (2015).

  38. 38

    Cole, J. H. & Hollenberg, L. C. L. Scanning quantum decoherence microscopy. Nanotechnology 20, 495401 (2009).

    Article  Google Scholar 

  39. 39

    Bouchard, L. S., Acosta, V. M., Bauch, E. & Budker, D. Detection of the Meissner effect with a diamond magnetometer. New J. Phys. 13, 025017 (2011).

    Article  Google Scholar 

  40. 40

    Waxman, A. et al. Diamond magnetometry of superconducting thin films. Phys. Rev. B 89, 054509 (2014).

    Article  Google Scholar 

  41. 41

    Pearl, J. Structure of superconductive vortices near a metal-air interface. J. Appl. Phys. 37, 4139–4141 (1966).

    CAS  Article  Google Scholar 

  42. 42

    Hashimoto, K. et al. A sharp peak of the zero-temperature penetration depth at optimal composition in BaFe2(As1−xPx)2 . Science 336, 1554–1557 (2012).

    CAS  Article  Google Scholar 

  43. 43

    Demirdis, S. et al. Disorder, critical currents, and vortex pinning energies in isovalently substituted BaFe2(As1−xPx)2 . Phys. Rev. B 87, 094506 (2013).

    Article  Google Scholar 

  44. 44

    Yin, Y. et al. Scanning tunneling spectroscopy and vortex imaging in the iron pnictide superconductor BaFe1.8Co0.2As2 . Phys. Rev. Lett. 102, 097002 (2009).

    Article  Google Scholar 

  45. 45

    Gutierrez, J. et al. Scanning Hall probe microscopy of unconventional vortex patterns in the two-gap MgB2 superconductor. Phys. Rev. B 85, 094511 (2012).

    Article  Google Scholar 

  46. 46

    Håkansson, M., Löfwander, T. & Fogelström, M. Spontaneously broken time-reversal symmetry in high-temperature superconductors. Nature Phys. 11, 755–760 (2015).

    Article  Google Scholar 

  47. 47

    Janson, O. et al. The quantum nature of skyrmions and half-skyrmions in Cu2OSeO3 . Nature Commun. 5, 5376 (2014).

    CAS  Article  Google Scholar 

  48. 48

    Jackson, C. A., Zhang, J. Y., Freeze, C. R. & Stemmer, S. Quantum critical behaviour in confined SrTiO3 quantum wells embedded in antiferromagnetic SmTiO3 . Nature Commun. 5, 4258 (2014).

    CAS  Article  Google Scholar 

  49. 49

    Momenzadeh, S. A. et al. Nanoengineered diamond waveguide as a robust bright platform for nanomagnetometry using shallow nitrogen vacancy centers. Nano Lett. 15, 165–169 (2015).

    CAS  Article  Google Scholar 

  50. 50

    Myers, B. A. et al. Probing surface noise with depth-calibrated spins in diamond. Phys. Rev. Lett. 113, 027602 (2014).

    CAS  Article  Google Scholar 

Download references


We thank B. Myers, D. Rugar, J. Mamin and B. Shen for helpful discussions. The work at UCSB was supported by an Air Force Office of Scientific Research PECASE award, DARPA QuASAR, and the MRSEC Program of the National Science Foundation under Award No. DMR 1121053. The work at UCLA was supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0011978. M.P. acknowledges support from the Harvey L. Karp Discovery award.

Author information




M.P. and A.J. designed the experimental apparatus, carried out the experiments and analysed the data. A.J. and C.R. performed the simulations. P.O. fabricated the diamond probes. E.E. and N.N. provided the iron pnictide sample. M.P. and A.C.B.J. wrote the paper with feedback from all authors. A.C.B.J. supervised the project.

Corresponding author

Correspondence to Ania C. Bleszynski Jayich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 277 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pelliccione, M., Jenkins, A., Ovartchaiyapong, P. et al. Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor. Nature Nanotech 11, 700–705 (2016).

Download citation

Further reading


Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research