Article | Published:

Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor

Nature Nanotechnology volume 11, pages 700705 (2016) | Download Citation

Abstract

High-spatial-resolution magnetic imaging has driven important developments in fields ranging from materials science to biology. However, to uncover finer details approaching the nanoscale with greater sensitivity requires the development of a radically new sensor technology. The nitrogen–vacancy (NV) defect in diamond has emerged as a promising candidate for such a sensor on the basis of its atomic size and quantum-limited sensing capabilities. It has remained an outstanding challenge to implement the NV centre as a nanoscale scanning magnetic probe at cryogenic temperatures, however, where many solid-state systems exhibit non-trivial magnetic order. Here, we present NV magnetic imaging down to 6 K with 3 μT Hz–1/2 field sensitivity, and use the technique to image vortices in the iron pnictide superconductor BaFe2(As0.7P0.3)2 with critical temperature Tc = 30 K. The expansion of NV-based magnetic imaging to cryogenic temperatures will enable future studies of previously inaccessible nanoscale magnetism in condensed-matter systems.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Spins in the vortices of a high-temperature superconductor. Science 291, 1759–1762 (2001).

  2. 2.

    et al. Magnetic effects at the interface between non-magnetic oxides. Nature Mater. 6, 493–496 (2007).

  3. 3.

    & Topological properties and dynamics of magnetic skyrmions. Nature Nanotech. 8, 899–911 (2013).

  4. 4.

    et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

  5. 5.

    et al. Unwinding of a skyrmion lattice by magnetic monopoles. Science 340, 1076–1080 (2013).

  6. 6.

    et al. Critical thickness for ferromagnetism in LaAlO3/SrTiO3 heterostructures. Nature Commun. 3, 922 (2012).

  7. 7.

    et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

  8. 8.

    et al. Unconventional superconductivity in Ba0.6K0.4Fe2As2 from inelastic neutron scattering. Nature 456, 930–932 (2008).

  9. 9.

    et al. A scanning superconducting quantum interference device with single electron spin sensitivity. Nature Nanotech. 8, 639–644 (2013).

  10. 10.

    et al. Decoherence-protected quantum gates for a hybrid solid-state spin register. Nature 484, 82–86 (2012).

  11. 11.

    et al. Spin-light coherence for single-spin measurement and control in diamond. Science 330, 1212–1215 (2010).

  12. 12.

    et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).

  13. 13.

    et al. Single-shot readout of a single nuclear spin. Science 329, 542–544 (2010).

  14. 14.

    et al. Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity. Nature Photon. 5, 301–305 (2011).

  15. 15.

    , , , & Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond. Proc. Natl Acad. Sci. USA 110, 8417–8421 (2013).

  16. 16.

    et al. Electric-field sensing using single diamond spins. Nature Phys. 7, 459–463 (2011).

  17. 17.

    et al. Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume. Science 339, 561–563 (2013).

  18. 18.

    et al. Nanoscale nuclear magnetic resonance with a nitrogen vacancy spin sensor. Science 339, 557–560 (2013).

  19. 19.

    , , & Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator. Nature Commun. 5, 4429 (2014).

  20. 20.

    et al. Magnetometry with nitrogen–vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014).

  21. 21.

    & Spin microscope based on optically detected magnetic resonance. J. Appl. Phys. 97, 014903 (2005).

  22. 22.

    Scanning magnetic field microscope with a diamond single spin sensor. Appl. Phys. Lett. 92, 243111 (2008).

  23. 23.

    et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Phys. 4, 810–816 (2008).

  24. 24.

    , , , & Two-dimensional nanoscale imaging of gadolinium spins via scanning probe relaxometry with a single spin in diamond. Phys. Rev. Appl. 2, 054014 (2014).

  25. 25.

    et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

  26. 26.

    et al. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nature Nanotech. 7, 320–324 (2012).

  27. 27.

    et al. Nanoscale magnetic imaging of a single electron spin under ambient conditions. Nature Phys. 9, 215–219 (2013).

  28. 28.

    et al. Stray-field imaging of magnetic vortices with a single diamond spin. Nature Commun. 4, 2279 (2013).

  29. 29.

    et al. Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope. Science 344, 1366–1369 (2014).

  30. 30.

    et al. Measurement and control of single nitrogen-vacancy center spins above 600 K. Phys. Rev. X 2, 031001 (2012).

  31. 31.

    , , & Nanoscale nuclear magnetic resonance with a 1.9-nm-deep nitrogen-vacancy sensor. Appl. Phys. Lett. 104, 033102 (2014). .

  32. 32.

    et al. Effect of low-damage inductively coupled plasma on shallow nitrogen-vacancy centers in diamond. Appl. Phys. Lett. 107, 073107 (2015).

  33. 33.

    , , , & Design of a scanning gate microscope for mesoscopic electron systems in a cryogen-free dilution refrigerator. Rev. Sci. Instrum. 84, 033703 (2013).

  34. 34.

    , , , & High quality factor single-crystal diamond mechanical resonators. Appl. Phys. Lett. 101, 163505 (2012).

  35. 35.

    et al. Single-color centers implanted in diamond nanostructures. New J. Phys. 13, 045004 (2011).

  36. 36.

    et al. Generation of single color centers by focused nitrogen implantation. Appl. Phys. Lett. 87, 261909 (2005).

  37. 37.

    et al. Decoherence imaging of spin ensembles using a scanning single-electron spin in diamond. Sci. Rep. 5 (2015).

  38. 38.

    & Scanning quantum decoherence microscopy. Nanotechnology 20, 495401 (2009).

  39. 39.

    , , & Detection of the Meissner effect with a diamond magnetometer. New J. Phys. 13, 025017 (2011).

  40. 40.

    et al. Diamond magnetometry of superconducting thin films. Phys. Rev. B 89, 054509 (2014).

  41. 41.

    Structure of superconductive vortices near a metal-air interface. J. Appl. Phys. 37, 4139–4141 (1966).

  42. 42.

    et al. A sharp peak of the zero-temperature penetration depth at optimal composition in BaFe2(As1−xPx)2. Science 336, 1554–1557 (2012).

  43. 43.

    et al. Disorder, critical currents, and vortex pinning energies in isovalently substituted BaFe2(As1−xPx)2. Phys. Rev. B 87, 094506 (2013).

  44. 44.

    et al. Scanning tunneling spectroscopy and vortex imaging in the iron pnictide superconductor BaFe1.8Co0.2As2. Phys. Rev. Lett. 102, 097002 (2009).

  45. 45.

    et al. Scanning Hall probe microscopy of unconventional vortex patterns in the two-gap MgB2 superconductor. Phys. Rev. B 85, 094511 (2012).

  46. 46.

    , & Spontaneously broken time-reversal symmetry in high-temperature superconductors. Nature Phys. 11, 755–760 (2015).

  47. 47.

    et al. The quantum nature of skyrmions and half-skyrmions in Cu2OSeO3. Nature Commun. 5, 5376 (2014).

  48. 48.

    , , & Quantum critical behaviour in confined SrTiO3 quantum wells embedded in antiferromagnetic SmTiO3. Nature Commun. 5, 4258 (2014).

  49. 49.

    et al. Nanoengineered diamond waveguide as a robust bright platform for nanomagnetometry using shallow nitrogen vacancy centers. Nano Lett. 15, 165–169 (2015).

  50. 50.

    et al. Probing surface noise with depth-calibrated spins in diamond. Phys. Rev. Lett. 113, 027602 (2014).

Download references

Acknowledgements

We thank B. Myers, D. Rugar, J. Mamin and B. Shen for helpful discussions. The work at UCSB was supported by an Air Force Office of Scientific Research PECASE award, DARPA QuASAR, and the MRSEC Program of the National Science Foundation under Award No. DMR 1121053. The work at UCLA was supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0011978. M.P. acknowledges support from the Harvey L. Karp Discovery award.

Author information

Affiliations

  1. Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA

    • Matthew Pelliccione
    • , Alec Jenkins
    • , Preeti Ovartchaiyapong
    • , Christopher Reetz
    •  & Ania C. Bleszynski Jayich
  2. Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA

    • Eve Emmanouilidou
    •  & Ni Ni

Authors

  1. Search for Matthew Pelliccione in:

  2. Search for Alec Jenkins in:

  3. Search for Preeti Ovartchaiyapong in:

  4. Search for Christopher Reetz in:

  5. Search for Eve Emmanouilidou in:

  6. Search for Ni Ni in:

  7. Search for Ania C. Bleszynski Jayich in:

Contributions

M.P. and A.J. designed the experimental apparatus, carried out the experiments and analysed the data. A.J. and C.R. performed the simulations. P.O. fabricated the diamond probes. E.E. and N.N. provided the iron pnictide sample. M.P. and A.C.B.J. wrote the paper with feedback from all authors. A.C.B.J. supervised the project.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Ania C. Bleszynski Jayich.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nnano.2016.68

Further reading