Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metallic, magnetic and molecular nanocontacts

Abstract

Scanning tunnelling microscopy and break-junction experiments realize metallic and molecular nanocontacts that act as ideal one-dimensional channels between macroscopic electrodes. Emergent nanoscale phenomena typical of these systems encompass structural, mechanical, electronic, transport, and magnetic properties. This Review focuses on the theoretical explanation of some of these properties obtained with the help of first-principles methods. By tracing parallel theoretical and experimental developments from the discovery of nanowire formation and conductance quantization in gold nanowires to recent observations of emergent magnetism and Kondo correlations, we exemplify the main concepts and ingredients needed to bring together ab initio calculations and physical observations. It can be anticipated that diode, sensor, spin-valve and spin-filter functionalities relevant for spintronics and molecular electronics applications will benefit from the physical understanding thus obtained.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gold nanowires.
Figure 2: Model break-junction nanocontact.
Figure 3: Conductance quantization.
Figure 4: Shot noise measurements.
Figure 5: Kondo conductance anomaly.
Figure 6: Scanning tunnelling microscope molecular break junction.

Similar content being viewed by others

References

  1. Agraϊt, N., Levi Yeyati, A. & van Ruitenbeek, J. M. Quantum properties of atomic-sized conductors. Phys. Rep. 377, 81–279 (2003).

    Google Scholar 

  2. Muller, C. J., van Ruitenbeek, J. M. & de Jongh, L. J. Conductance and supercurrent discontinuities in atomic-scale metallic constrictions of variable width. Phys. Rev. Lett. 69, 140–143 (1992).

    CAS  Google Scholar 

  3. Gimzewski, J. K. & Möller, R. Transition from the tunneling regime to point contact studied using scanning tunneling microscopy. Phys. Rev. B 36, 1284–1287 (1987).

    CAS  Google Scholar 

  4. Ohnishi, H., Kondo, Y. & Takayanagi, K. Quantized conductance through individual rows of suspended gold atoms. Nature 395, 780–783 (1998).

    Article  CAS  Google Scholar 

  5. Rodrigues, V. & Ugarte, D. Real-time imaging of atomistic process in one-atom-thick metal junctions. Phys. Rev. B 63, 073405 (2001).

    Google Scholar 

  6. Park, H., Lim, A. K. L., Alivisatos, A. P., Park, J. & McEuen, P. L. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 75, 301–303 (1999).

    CAS  Google Scholar 

  7. Li, C. Z., Bogozi, A., Huang, W. & Tao, N. J. Fabrication of stable metallic nanowires with quantized conductance. Nanotechnology 10, 221–223 (1999).

    Google Scholar 

  8. Morpurgo, A. F., Marcus, C. M. & Robinson, D. B. Controlled fabrication of metallic electrodes with atomic separation. Appl. Phys. Lett. 74, 2084–2086 (1999).

    CAS  Google Scholar 

  9. Agraϊt, N., Rodrigo, J. G. & Vieira, S. Conductance steps and quantization in atomic-size contacts. Phys. Rev. B 47, 12345–12348 (1993).

    Google Scholar 

  10. Pascual, J. I. et al. Quantum contact in gold nanostructures by scanning tunneling microscopy. Phys. Rev. Lett. 71, 1852–1855 (1993).

    CAS  Google Scholar 

  11. Brandbyge, M. et al. Quantized conductance in atom-sized wires between two metals. Phys. Rev. B 52, 8499–8514 (1995).

    CAS  Google Scholar 

  12. Gai, Z., He, Y., Yu, H. & Yang, W. S. Observation of conductance quantization of ballistic metallic point contacts at room temperature. Phys. Rev. B 53, 1042–1045 (1996).

    CAS  Google Scholar 

  13. Yanson, A. I., Rubio Bollinger, G., van den Brom, H. E., Agraϊt, N. & van Ruitenbeek, J. M. Formation and manipulation of a metallic wire of single gold atoms. Nature 395, 783–785 (1998).

    CAS  Google Scholar 

  14. Krans, J. M. et al. One-atom point contacts. Phys. Rev. B 48, 14721–14724 (1993).

    CAS  Google Scholar 

  15. Olesen, L. et al. Quantised conductance in an atom-sized point contact. Phys. Rev. Lett. 72, 2251–2254 (1994).

    CAS  Google Scholar 

  16. Landauer, R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1, 223–231 (1957).

    Google Scholar 

  17. Buettiker, M. Absence of backscattering in the quantum Hall effect in multiprobe conductors. Phys. Rev. B 38, 9375–9389 (1988).

    Google Scholar 

  18. Imry, Y. & Landauer, R. Conductance viewed as transmission. Rev. Mod. Phys. 71, S306–S312 (1999).

    CAS  Google Scholar 

  19. Delin, A. & Tosatti, E. Emerging magnetism in platinum nanowires. Surf. Sci. 566–568, 262–267 (2004).

    Google Scholar 

  20. Smogunov, A., Dal Corso, A. & Tosatti, E. Magnetic phenomena, spin-orbit effects, and Landauer conductance in Pt nanowire contacts: density-functional theory calculations. Phys. Rev. B 78, 014423 (2008).

    Google Scholar 

  21. Smogunov, A., Dal Corso, A., Delin, A., Weht, R. & Tosatti, E. Colossal magnetic anisotropy of monatomic free and deposited platinum nanowires. Nature Nanotech. 3, 22–25 (2008).

    CAS  Google Scholar 

  22. Strigl, F., Espy, C., Bückle, M., Scheer, E. & Pietsch, T. Emerging magnetic order in platinum atomic contacts and chains. Nature Commun. 6, 6172 (2015).

    CAS  Google Scholar 

  23. Landman, U., Barnett, R. N., Cleveland, C. L. & Cheng, H.-P. Small is different. Int. J. Mod. Phys. B 6, 3623–3642 (1992).

    CAS  Google Scholar 

  24. Aviram, A. & Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974).

    CAS  Google Scholar 

  25. Joachim, C., Gimzewski, J. K. & Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000).

    CAS  Google Scholar 

  26. Tao, N. J. Electron transport in molecular junctions. Nature Nanotech. 1, 173–181 (2006).

    CAS  Google Scholar 

  27. Heath, J. R. Molecular electronics. Annu. Rev. Mater. Res. 39, 1–23 (2009).

    CAS  Google Scholar 

  28. Scott, G. D. & Natelson, D. Kondo resonance in molecular devices. ACS Nano 4, 3560–3579 (2010).

    CAS  Google Scholar 

  29. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Google Scholar 

  30. Sanvito, S. Molecular spintronics. Chem. Soc. Rev. 40, 3336–3355 (2011).

    CAS  Google Scholar 

  31. Landman, U., Luedtke, W. D., Burnham, N. A. & Colton, R. J. Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture. Science 248, 454–461 (1990).

    CAS  Google Scholar 

  32. Sutton, A. P. & Pethica, J. B. Inelastic flow processes in nanometre volumes of solids. J. Phys. Condens. Matter 2, 5317–5326 (1990).

    Google Scholar 

  33. Gülseren, O., Ercolessi, F. & Tosatti, E. Noncrystalline structures of ultrathin unsupported nanowires. Phys. Rev. Lett. 80, 3775–3778 (1998).

    Google Scholar 

  34. Nakamura, A., Brandbyge, M., Hansen, L. B. & Jacobsen, K. W. Density functional simulation of a breaking nanowire. Phys. Rev. Lett. 82, 1538–1541 (1999).

    CAS  Google Scholar 

  35. Häkkinen, H., Barnett, R. N., Scherbakov, A. G. & Landman, U. Nanowire gold chains: formation mechanisms and conductance. J. Phys. Chem. B 104, 9063–9066 (2000).

    Google Scholar 

  36. Bahn, S. R. & Jacobsen, K. W. Chain formation of metal atoms. Phys. Rev. Lett. 87, 266101 (2001).

    CAS  Google Scholar 

  37. da Silva, E. Z., Novaes, F. D., da Silva, A. J. R. & Fazzio, A. Theoretical study of the formation, evolution, and breaking of gold nanowires. Phys. Rev. B 69, 115411 (2004).

    Google Scholar 

  38. Coura, P. Z. et al. On the structural and stability features of linear atomic suspended chains formed from gold nanowires stretching. Nano Lett. 4, 1187–1191 (2004).

    CAS  Google Scholar 

  39. Dednam, W. et al. Modeling contact formation between atomic-sized gold tips via molecular dynamics. J. Phys. Conf. Ser. 574, 012045 (2015).

    Google Scholar 

  40. Tosatti, E. Nanowire formation at metal–metal contacts. Solid State Commun. 135, 610–617 (2005).

    CAS  Google Scholar 

  41. Torres, J. A. et al. The puzzling stability of monatomic gold wires. Surf. Sci. 426, L441–L446 (1999).

    CAS  Google Scholar 

  42. Tosatti, E., Prestipino, P., Kostlmeier, S., Dal Corso, A. & Di Tolla, F. D. String tension and stability of magic tip-suspended nanowires. Science 291, 288–290 (2001).

    CAS  Google Scholar 

  43. Kondo, Y. & Takayanagi, K. Synthesis and characterization of helical multi-shell gold nanowires. Science 289, 606–608 (2000).

    CAS  Google Scholar 

  44. Smit, R. H. M., Untiedt, C., Yanson, A. I. & van Ruitenbeek, J. M. Common origin for surface reconstruction and the formation of chains of metal atoms. Phys. Rev. Lett. 87, 266102 (2001).

    CAS  Google Scholar 

  45. Yanson, A. I., Yanson, I. K. & van Ruitenbeek, J. M. Crossover from electronic to atomic shell structure in alkali metal nanowires. Phys. Rev. Lett. 87, 216805 (2001).

    CAS  Google Scholar 

  46. Urban, D. F. et al. Electronic shell effects and the stability of alkali nanowires. Solid State Commun. 131, 609–614 (2004).

    CAS  Google Scholar 

  47. Kizuka, T. Atomic configuration and mechanical and electrical properties of stable gold wires of single-atom width. Phys. Rev. B 77, 155401 (2008).

    Google Scholar 

  48. Ercolessi, F., Parrinello, M. & Tosatti, E. Simulation of gold in the glue model. Phil. Mag. A 58, 213–226 (1988).

    CAS  Google Scholar 

  49. Takeuchi, N., Chan, C. T. & Ho, K. M. First-principles calculations of equilibrium ground-state properties of Au and Ag. Phys. Rev. B 40, 1565–1570 (1989).

    CAS  Google Scholar 

  50. Lacroix, L.-M., Arenal, R. & Viau, G. Dynamic HAADF-STEM observation of a single-atom chain as the transient state of gold ultrathin nanowire breakdown. J. Am. Chem. Soc. 136, 13075–13077 (2014).

    CAS  Google Scholar 

  51. Scheer, E. et al. The signature of chemical valence in the electrical conduction through a single-atom contact. Nature 394, 154–157 (1998).

    CAS  Google Scholar 

  52. Brandbyge, M., Mozos, J.-L., Ordejón, P., Taylor, J. & Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002).

    Google Scholar 

  53. Mehrez, H. et al. IV characteristics and differential conductance fluctuations of Au nanowires. Phys. Rev. B 65, 195419 (2002).

    Google Scholar 

  54. Palacios, J. J., Pérez-Jiménez, A. J., Louis, E., SanFabián, E. & Vergés, J. A. First-principles approach to electrical transport in atomic-scale nanostructures. Phys. Rev. B 66, 035322 (2002).

    Google Scholar 

  55. van Wees, B. J. et al. Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 60, 848–850 (1988).

    CAS  Google Scholar 

  56. Wharam, D. A. et al. One-dimensional transport and the quantisation of the ballistic resistance. J. Phys. C 21, L209–L214 (1988).

    Google Scholar 

  57. Rubio, G., Agraϊt, N. & Vieira, S. Atomic-sized metallic contacts: mechanical properties and electronic transport. Phys. Rev. Lett. 76, 2302–2305 (1996).

    CAS  Google Scholar 

  58. Rubio-Bollinger, G., Bahn, S. R., Agraϊt, N., Jacobsen, K. W. & Vieira, S. Mechanical properties and formation mechanisms of a wire of single gold atoms. Phys. Rev. Lett. 87, 026101 (2001).

    Google Scholar 

  59. Sorensen, M. R., Brandbyge, M. & Jacobsen, K. W. Mechanical deformation of atomic-scale metallic contacts: structure and mechanisms. Phys. Rev. B 57, 3283–3294 (1998).

    Google Scholar 

  60. Todorov, T. N. & Sutton, A. P. Force and conductance jumps in atomic-scale metallic contacts. Phys. Rev. B 54, R14234–R14237 (1996).

    CAS  Google Scholar 

  61. Calzolari, A., Marzari, N., Souza, I. & Buongiorno Nardelli, M. Ab initio transport properties of nanostructures from maximally localized Wannier functions. Phys. Rev. B 69, 035108 (2004).

    Google Scholar 

  62. Smogunov, A., Dal Corso, A. & Tosatti, E. Ballistic conductance of magnetic Co and Ni nanowires with ultrasoft pseudopotentials. Phys. Rev. B 70, 045417 (2004).

    Google Scholar 

  63. Choi, H. J. & Ihm, J. Ab initio pseudopotential method for the calculation of conductance in quantum wires. Phys. Rev. B 59, 2267–2275 (1999).

    Google Scholar 

  64. Giannozzi, P. et al. Quantum Espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Google Scholar 

  65. Untiedt, C., Dekker, D. M. T., Djukic, D. & van Ruitenbeek, J. M. Absence of magnetically induced fractional quantization in atomic contacts. Phys. Rev. B 69, 081401R (2004).

    Google Scholar 

  66. Sirvent, C. et al. Conductance step for a single-atom contact in the scanning tunneling microscope: noble and transition metals. Phys. Rev. B 53, 16086–16090 (1996).

    CAS  Google Scholar 

  67. Oshima, H. & Miyano, K. Spin-dependent conductance quantization in nickel point contacts. Appl. Phys. Lett. 73, 2203–2205 (1998).

    CAS  Google Scholar 

  68. Ono, T., Ooka, Y., Miyajima, H. & Otani, Y. 2e2/h to e2/h switching of quantum conductance associated with a change in nanoscale ferromagnetic domain structure. Appl. Phys. Lett. 75, 1622–1624 (1999).

    CAS  Google Scholar 

  69. Bakker, D. J., Noat, Y., Yanson, A. I. & van Ruitenbeek, J. M. Effect of disorder on the conductance of a Cu atomic point contact. Phys. Rev. B 65, 235416 (2002).

    Google Scholar 

  70. Ludoph, B. & van Ruitenbeek, J. M. Conductance fluctuations as a tool for investigating the quantum modes in atomic-size metallic contacts. Phys. Rev. B 61, 2273–2285 (2000).

    CAS  Google Scholar 

  71. Jacob, D., Fernández-Rossier, J. & Palacios, J. J. Magnetic and orbital blocking in Ni nanocontacts. Phys. Rev. B 71, 220403R (2005).

    Google Scholar 

  72. Smogunov, A., Dal Corso, A. & Tosatti, E. Ballistic conductance and magnetism in short tip suspended Ni nanowires. Phys. Rev. B 73, 075418 (2006).

    Google Scholar 

  73. Bagrets, A., Papanikolaou, N. & Mertig, I. Magnetoresistance of atomic-sized contacts: an ab initio study. Phys. Rev. B 70, 064410 (2004).

    Google Scholar 

  74. Smogunov, A., Dal Corso, A. & Tosatti, E. Selective d-state conduction blocking in nickel nanocontacts. Surf. Sci. 507–510, 609–614 (2002).

    Google Scholar 

  75. Smogunov, A., Dal Corso, A. & Tosatti, E. Ballistic conductance of Ni nanowire with a magnetization reversal. Surf. Sci. 566–568, 390–395 (2004).

    Google Scholar 

  76. Autés, G., Barreteau, C., Desjonquéres, M. C., Spanjaard, D. & Viret, M. Giant orbital moments are responsible for the anisotropic magnetoresistance of atomic contacts. Europhys. Lett. 83, 17010 (2008).

    Google Scholar 

  77. Sokolov, A., Zhang, C., Tsymbal, E. Y., Redepenning, J. & Doudin, B. Quantized magnetoresistance in atomic-size contacts. Nature Nanotech. 2, 171–175 (2007).

    CAS  Google Scholar 

  78. Velev, J., Sabirianov, R. F., Jaswal, S. S. & Tsymbal, E. Y. Ballistic anisotropic magnetoresistance. Phys. Rev. Lett. 94, 127203 (2005).

    CAS  Google Scholar 

  79. Smogunov, A. & Dappe, Y. J. Symmetry-derived half-metallicity in atomic and molecular junctions. Nano Lett. 15, 3552–3556 (2015).

    CAS  Google Scholar 

  80. Jacob, D., Fernández-Rossier, J. & Palacios, J. J. Emergence of half-metallicity in suspended NiO chains: ab initio electronic structure and quantum transport calculations. Phys. Rev. B 74, 081402R (2006).

    Google Scholar 

  81. Delin, A. & Tosatti, E. Magnetic phenomena in 5d transition metal nanowires. Phys. Rev. B 68, 144434 (2003).

    Google Scholar 

  82. Gava, P., Dal Corso, A., Smogunov, A. & Tosatti, E. Magnetism-induced ballistic conductance changes in palladium nanocontacts. Eur. Phys. J. B75, 57–64 (2010).

    Google Scholar 

  83. Fernández-Rossier, J., Jacob, D., Untiedt, C. & Palacios, J. J. Transport in magnetically ordered Pt nanocontacts. Phys. Rev. B 72, 224418 (2005).

    Google Scholar 

  84. Smit, R. H. M. et al. Measurement of the conductance of a hydrogen molecule. Nature 419, 906–909 (2002).

    CAS  Google Scholar 

  85. Nielsen, S. K. et al. Conductance of single-atom platinum contacts: voltage dependence of the conductance histogram. Phys. Rev. B 67, 245411 (2003).

    Google Scholar 

  86. Blanter, Ya. M. & Büttiker, M. Shot noise in mesoscopic conductors. Phys. Rep. 336, 1–166 (2000).

    CAS  Google Scholar 

  87. van den Brom, H. E. & van Ruitenbeek, J. M. Quantum suppression of shot noise in atom-size metallic contacts. Phys. Rev. Lett. 82, 1526–1529 (1999).

    CAS  Google Scholar 

  88. Scheer, E., Joyez, P., Urbina, C. & Devoret, M. H. Conduction channel transmissions of atomic-size aluminum contacts. Phys. Rev. Lett. 78, 3535–3538 (1997).

    CAS  Google Scholar 

  89. Chen, R., Matt, M., Pauly, F., Cuevas, J. C. & Natelson, D. Shot noise variation within ensembles of gold atomic break junctions at room temperature. J. Phys. Condens. Matter 26, 474204 (2014).

    CAS  Google Scholar 

  90. Kumar, M. et al. Shot noise and magnetism of Pt atomic chains: accumulation of points at the boundary. Phys. Rev. B 88, 245431 (2013).

    Google Scholar 

  91. Burtzlaff, A., Weismann, A., Brandbyge, M. & Berndt, R. Shot noise as a probe of spin-polarized transport through single atoms. Phys. Rev. Lett. 114, 016602 (2015).

    Google Scholar 

  92. Hewson, A. The Kondo Problem to Heavy Fermions (Cambridge Univ. Press, 1993).

    Google Scholar 

  93. Madhavan, V., Chen, W., Jamneala, T., Crommie, M. F. & Wingreen, N. S. Tunneling into a single magnetic atom: spectroscopic evidence of the Kondo resonance. Science 280, 567–569 (1998).

    CAS  Google Scholar 

  94. Wahl, P. et al. Kondo temperature of magnetic impurities at surfaces. Phys. Rev. Lett. 93, 176603 (2004).

    CAS  Google Scholar 

  95. Manoharan, H. C., Lutz, C. P. & Eigler, D. M. Quantum mirages formed by coherent projection of electronic structure. Nature 403, 512–515 (2000).

    CAS  Google Scholar 

  96. Néel, N. et al. Conductance and Kondo effect in a controlled single-atom contact. Phys. Rev. Lett. 98, 016801 (2007).

    Google Scholar 

  97. Vitali, L. et al. Kondo effect in single atom contacts: the importance of the atomic geometry. Phys. Rev. Lett. 101, 216802 (2008).

    Google Scholar 

  98. Li, J., Schneider, W.-D., Berndt, R. & Delley, B. Kondo scattering observed at a single magnetic impurity. Phys. Rev. Lett. 80, 2893–2896 (1998).

    CAS  Google Scholar 

  99. Prüser, H. et al. Long-range Kondo signature of a single magnetic impurity. Nature Phys. 7, 203–206 (2011).

    Google Scholar 

  100. Calvo, M. R. et al. The Kondo effect in ferromagnetic atomic contacts. Nature 458, 1150–1153 (2009).

    CAS  Google Scholar 

  101. Újsághy, O., Kroha, J., Szunyogh, L. & Zawadowski, A. Theory of the Fano resonance in the STM tunneling density of states due to a single Kondo impurity. Phys. Rev. Lett. 85, 2557–2560 (2000).

    Google Scholar 

  102. Park, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002).

    CAS  Google Scholar 

  103. Liang, W., Shores, M. P., Bockrath, M., Long, J. R. & Park, H. Kondo resonance in a single-molecule transistor. Nature 417, 725–729 (2002).

    CAS  Google Scholar 

  104. Parks, J. J. et al. Mechanical control of spin states in spin-1 molecules and the under screened Kondo effect. Science 328, 1370–1373 (2010).

    CAS  Google Scholar 

  105. Rakhmilevitch, D., Korytár, R., Bagrets, A., Evers, F. & Tal, O. Electron–vibration interaction in the presence of a switchable Kondo resonance realized in a molecular junction. Phys. Rev. Lett. 113, 236603 (2014).

    CAS  Google Scholar 

  106. Yu, L. H. et al. Inelastic electron tunneling via molecular vibrations in single-molecule transistors. Phys. Rev. Lett. 93, 266802 (2004).

    CAS  Google Scholar 

  107. Parks, J. J. et al. Tuning the Kondo effect with a mechanically controllable break junction. Phys. Rev. Lett. 99, 026601 (2007).

    CAS  Google Scholar 

  108. Roch, N., Florens, S., Costi, T. A., Wernsdorfer, W. & Balestro, F. Observation of the underscreened Kondo effect in a molecular transistor. Phys. Rev. Lett. 103, 197202 (2009).

    Google Scholar 

  109. Osorio, E. A. et al. Electronic excitations of a single molecule contacted in a three-terminal configuration. Nano Lett. 7, 3336–3342 (2007).

    CAS  Google Scholar 

  110. Frisenda, R. et al. Kondo effect in a neutral and stable all organic radical single molecule break junction. Nano Lett. 15, 3109–3114 (2015).

    CAS  Google Scholar 

  111. Wahl, P. et al. Kondo effect of molecular complexes at surfaces: ligand control of the local spin coupling. Phys. Rev. Lett. 95, 166601 (2005).

    CAS  Google Scholar 

  112. Zhao, A. et al. Controlling the Kondo effect of an adsorbed magnetic ion through its chemical bonding. Science 309, 1542–1544 (2005).

    CAS  Google Scholar 

  113. Iancu, V., Deshpande, A. & Hla, S.-W. Manipulating Kondo temperature via single molecule switching. Nano Lett. 6, 820–823 (2006).

    CAS  Google Scholar 

  114. Komeda, T. et al. Observation and electric current control of a local spin in a single-molecule magnet. Nature Commun. 2, 217 (2011).

    Google Scholar 

  115. Mugarza, A. et al. Spin coupling and relaxation inside molecule–metal contacts. Nature Commun. 2, 490 (2011).

    Google Scholar 

  116. Minamitani, E. et al. Symmetry-driven novel Kondo effect in a molecule. Phys. Rev. Lett. 109, 086602 (2012).

    Google Scholar 

  117. Karan, S. et al. Shifting the voltage drop in electron transport through a single molecule. Phys. Rev. Lett. 115, 016802 (2015).

    Google Scholar 

  118. Temirov, R., Lassise, A., Anders, F. B. & Tautz, F. S. Kondo effect by controlled cleavage of a single-molecule contact. Nanotechnology 19, 065401 (2008).

    CAS  Google Scholar 

  119. Müllegger, S., Rashidi, M., Fattinger, M. & Koch, R. Surface-supported hydrocarbon π radicals show Kondo behavior. J. Phys. Chem. C 117, 5718–5721 (2013).

    Google Scholar 

  120. Zhang, Y.-H. et al. Temperature and magnetic field dependence of a Kondo system in the weak coupling regime. Nature Commun. 4, 2110 (2013).

    Google Scholar 

  121. Requist, R. et al. Kondo conductance across the smallest spin 1/2 radical molecule. Proc. Natl Acad. Sci. USA 111, 69–74 (2014).

    CAS  Google Scholar 

  122. Xu, B. & Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).

    CAS  Google Scholar 

  123. Quek, S. Y. et al. Mechanically controlled binary conductance switching of a single-molecule junction. Nature Nanotech. 4, 230–234 (2009).

    CAS  Google Scholar 

  124. Aradhya, S. V. & Venkataraman, L. Single-molecule junctions beyond electronic transport. Nature Nanotech. 8, 399–410 (2013).

    CAS  Google Scholar 

  125. Haiss, W. et al. Redox state dependence of single molecule conductivity. J. Am. Chem. Soc. 125, 15294–15295 (2003).

    CAS  Google Scholar 

  126. Sotthewes, K., Geskin, V., Heimbuch, R., Kumar, A. & Zandvliet, H. J. W. Research update: molecular electronics: the single-molecule switch and transistor. APL Mater. 2, 010701 (2014).

    Google Scholar 

  127. Lucignano, P., Mazzarello, R., Smogunov, A., Fabrizio, M. & Tosatti, E. Kondo conductance in an atomic nanocontact from first principles. Nature Mater. 8, 563–567 (2009).

    CAS  Google Scholar 

  128. Bulla, R., Costi, T. A. & Pruschke, T. Numerical renormalization group method for quantum impurity systems. Rev. Mod. Phys. 80, 395–450 (2008).

    CAS  Google Scholar 

  129. Žitko, R. & Pruschke, T. Energy resolution and discretization artifacts in the numeric renormalization group. Phys. Rev. B 79, 085106 (2009).

    Google Scholar 

  130. Baruselli, P. P., Requist, R., Smogunov, A., Fabrizio, M. & Tosatti, E. Co adatoms on Cu surfaces: ballistic conductance and Kondo temperature. Phys. Rev. B 92, 045119 (2015).

    Google Scholar 

  131. Baruselli, P. P., Smogunov, A., Fabrizio, M. & Tosatti, E. Kondo effect of magnetic impurities in nanotubes. Phys. Rev. Lett. 108, 206807 (2012).

    CAS  Google Scholar 

  132. Dias da Silva, L. G. G. V., Tiago, M. L., Ulloa, S. E., Reboredo, F. A. & Dagotto, E. Many-body electronic structure and Kondo properties of cobalt-porphyrin molecules. Phys. Rev. B 80, 155443 (2009).

    Google Scholar 

  133. Cornaglia, P. S., Roura Bas, P., Aligia, A. A. & Balseiro, C. A. Quantum transport through a stretched spin-1 molecule. Europhys. Lett. 93, 47005 (2010).

    Google Scholar 

  134. Jacob, D., Haule, K. & Kotliar, G. Kondo effect and conductance of nanocontacts with magnetic impurities. Phys. Rev. Lett. 103, 016803 (2009).

    CAS  Google Scholar 

  135. Costi, T. A. et al. Finding the right spin model for iron impurities in gold and silver. Phys. Rev. Lett. 102, 056802 (2009).

    CAS  Google Scholar 

  136. Surer, B. et al. Multiorbital Kondo physics of Co in Cu hosts. Phys. Rev. B 85, 085114 (2012).

    Google Scholar 

  137. Jacob, D., Soriano, M. & Palacios, J. J. Kondo effect and spin quenching in high-spin molecules on metal substrates. Phys. Rev. B 88, 134417 (2013).

    Google Scholar 

  138. Nozières, P. A “Fermi-liquid” description of the Kondo model at low temperatures. J. Low Temp. Phys. 17, 31–42 (1974).

    Google Scholar 

  139. Nozières, P. & Blandin, A. Kondo effect in real metals. J. Phys. (Paris) 41, 193–211 (1980).

    Google Scholar 

  140. Koller, W., Hewson, A. C. & Meyer, D. Singular dynamics of underscreened magnetic impurity models. Phys. Rev. B 72, 045117 (2005).

    Google Scholar 

  141. Mehta, P., Andrei, N., Coleman, P., Borda, L. & Zarand, G. Regular and singular Fermi-liquid fixed points in quantum impurity models. Phys. Rev. B 72, 014430 (2005).

    Google Scholar 

  142. Anderson, P. W. A poor man's derivation of scaling laws for the Kondo problem. J. Phys. C 3, 2436–2441 (1970).

    CAS  Google Scholar 

  143. Baruselli, P. P., Requist, R., Fabrizio, M. & Tosatti, E. Ferromagnetic Kondo effect in a triple quantum dot system. Phys. Rev. Lett. 111, 047201 (2013).

    CAS  Google Scholar 

  144. Gentile, P., De Leo, L., Fabrizio, M. & Tosatti, E. Lack of Kondo screening at nanocontacts of nearly magnetic metals. Eur. Phys. Lett. 87, 27014 (2009).

    Google Scholar 

  145. Kuzmenko, T., Kikoin, K. & Avishai, Y. Tunneling through triple quantum dots with mirror symmetry. Phys. Rev. B 73, 235310 (2006).

    Google Scholar 

  146. Mitchell, A. K., Jarrold, T. F., Galpin, M. R. & Logan, D. E. Local moment formation and Kondo screening in impurity trimers. J. Phys. Chem. B 117, 12777–12786 (2013).

    CAS  Google Scholar 

  147. Andrade, J. A., García, D. J. & Cornaglia, P. S. Ferromagnetic and underscreened Kondo behavior in quantum dot arrays. Phys. Rev. B 92, 165416 (2015).

    Google Scholar 

  148. Metzger, R. M. Unimolecular electrical rectifiers. Chem. Rev. 103, 3803–3834 (2003).

    CAS  Google Scholar 

  149. Elbing, M. et al. A single-molecule diode. Proc. Natl Acad. Sci. USA 102, 8815–8820 (2005).

    CAS  Google Scholar 

  150. Díez-Pérez, I. et al. Rectification and stability of a single molecular diode with controlled orientation. Nature Chem. 1, 635–641 (2009).

    Google Scholar 

  151. Batra, A. et al. Tuning rectification in single-molecular diodes. Nano Lett. 13, 6233–6237 (2013).

    CAS  Google Scholar 

  152. Park, H. et al. Nanomechanical oscillations in a single-C60 transistor. Nature 407, 57–60 (2000).

    CAS  Google Scholar 

  153. Roch, N., Florens, S., Bouchiat, V., Wernsdorfer, W. & Balestro, F. Quantum phase transition in a single-molecule quantum dot. Nature 453, 633–637 (2008).

    CAS  Google Scholar 

  154. Song, H. et al. Observation of molecular orbital gating. Nature 462, 1039–1043 (2009).

    CAS  Google Scholar 

  155. Martínez-Blanco, J. et al. Gating a single-molecule transistor with individual atoms. Nature Phys. 11, 640–644 (2015).

    Google Scholar 

  156. Sivkov, I. N., Brovko, O. O., Bazhanov, D. I. & Stepanyuk, V. S. Emergence of high spin polarization of conductance in atomic-size Co-Au contacts. Phys. Rev. B 89, 075436 (2014).

    Google Scholar 

  157. Pati, R., Senapati, L., Ajayan, P. M. & Nayak, S. K. First-principles calculations of spin-polarized electron transport in a molecular wire: molecular spin valve. Phys. Rev. B 68, 100407R (2003).

    Google Scholar 

  158. Rocha, A. R. et al. Towards molecular spintronics. Nature 4, 335–339 (2005).

    CAS  Google Scholar 

  159. Schmaus, S. et al. Giant magnetoresistance through a single molecule. Nature Nanotech. 6, 185–189 (2011).

    CAS  Google Scholar 

  160. Tao, L. L., Liang, S. H., Liu, D. P. & Han, X. F. Large magnetoresistance of paracyclophane-based molecular tunnel junctions: a first-principles study. J. Appl. Phys. 114, 213906 (2013).

    Google Scholar 

  161. Zu, F. et al. Nearly perfect spin filter, spin valve and negative differential resistance effects in a Fe4-based single-molecule junction. Sci. Rep. 4, 4838 (2013).

    Google Scholar 

  162. Vardimon, R., Klionsky, M. & Tal, O. Indication of complete spin filtering in atomic-scale nickel oxide. Nano Lett. 15, 3894–3898 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

Work in Trieste was partly sponsored by ERC Advanced Grant 320796 — MODPHYSFRICT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Requist.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Requist, R., Baruselli, P., Smogunov, A. et al. Metallic, magnetic and molecular nanocontacts. Nature Nanotech 11, 499–508 (2016). https://doi.org/10.1038/nnano.2016.55

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.55

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing