Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins

Abstract

Proton transport plays an important role in many biological processes due to the ability of protons to rapidly translocate along chains of hydrogen-bonded water molecules. Molecular dynamics simulations have predicted that confinement in hydrophobic nanochannels should enhance the rate of proton transport. Here, we show that 0.8-nm-diameter carbon nanotube porins, which promote the formation of one-dimensional water wires, can support proton transport rates exceeding those of bulk water by an order of magnitude. The transport rates in these narrow nanotube pores also exceed those of biological channels and Nafion. With larger 1.5-nm-diameter nanotube porins, proton transport rates comparable to bulk water are observed. We also show that the proton conductance of these channels can be modulated by the presence of Ca2+ ions. Our results illustrate the potential of small-diameter carbon nanotube porins as a proton conductor material and suggest that strong spatial confinement is a key factor in enabling efficient proton transport.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sub-1-nm CNTPs.
Figure 2: Proton conductance of CNT porins.
Figure 3: Activation energy of proton translocation in CNT porins.
Figure 4: Ca2+ ions influence proton flux through CNTPs.

Similar content being viewed by others

References

  1. Grotthuss, C. J. T. Sur la décomposition de l'eau et des corps q'uelle tient en dissolution à l'aide de l’électricité galvanique. Ann. Chim. LVIII, 54–74 (1806).

    Google Scholar 

  2. Wraight, C. A. Chance and design—Proton transfer in water, channels and bioenergetic proteins. Biochim. Biophys. Acta 1757, 886–912 (2006).

    Article  CAS  Google Scholar 

  3. Kashket, E. R. The proton motive force in bacteria – a critical-assessment of methods. Ann. Rev. Microbiol. 39, 219–242 (1985).

    Article  CAS  Google Scholar 

  4. DeCoursey, T. E. & Grinstein, S. in Inflammation: Basic Principles and Clinical Correlates (eds Gallin, J. I. & Snyderman, R.) 639–659 (Lippincott Williams & Wilkins, 1999).

  5. Demaurex, N., Downey, G. P., Waddell, T. K. & Grinstein, S. Intracellular pH regulation during spreading of human neutrophils. J. Cell Biol. 133, 1391–1402 (1996).

    Article  CAS  Google Scholar 

  6. DeCoursey, T. E. Hypothesis: do voltage-gated H+ channels in alveolar epithelial cells contribute to CO2 elimination by the lung? Am. J. Physiol. 278, C1–C10 (2000).

    Article  CAS  Google Scholar 

  7. Chernyshev, A., Armstrong, K. M. & Cukierman, S. Proton transfer in gramicidin channels is modulated by the thickness of monoglyceride bilayers. Biophys. J. 84, 238–250 (2003).

    Article  CAS  Google Scholar 

  8. Moffat, J. C. et al. Proton transport through influenza a virus M2 protein reconstituted in vesicles. Biophys. J. 94, 434–445 (2008).

    Article  CAS  Google Scholar 

  9. Zhou, J. et al. Function of protonatable residues in the flagellar motor of Escherichia coli: a critical role for Asp 32 of MotB. J. Bacteriol. 180, 2729–2735 (1998).

    CAS  Google Scholar 

  10. Aksimentiev, A., Balabin, I. A., Fillingame, R. H. & Schulten, K. Insights into the molecular mechanism of rotation in the Fo sector of ATP synthase. Biophys. J. 86, 1332–1344 (2004).

    Article  CAS  Google Scholar 

  11. Peighambardoust, S. J., Rowshanzamir, S. & Amjadi, M. Review of the proton exchange membranes for fuel cell applications. Int. J. Hydrogen. Energ. 35, 9349–9384 (2010).

    Article  CAS  Google Scholar 

  12. Slade, S., Campbell, S. A., Ralph, T. R. & Walsh, F. C. Ionic conductivity of an extruded Nafion 1100 EW series of membranes. J. Electrochem. Soc. 149, A1556–A1564 (2002).

    Article  CAS  Google Scholar 

  13. Maniwa, Y. et al. Water-filled single-wall carbon nanotubes as molecular nanovalves. Nature Mater. 6, 135–141 (2007).

    Article  CAS  Google Scholar 

  14. Kolesnikov, A. I. et al. Anomalously soft dynamics of water in a nanotube: a revelation of nanoscale confinement. Phys. Rev. Lett. 93, 035503 (2004).

    Article  Google Scholar 

  15. Lee, C. Y., Choi, W., Han, J.-H. & Strano, M. S. Coherence resonance in a single-walled carbon nanotube ion channel. Science 329, 1320–1324 (2010).

    Article  CAS  Google Scholar 

  16. Kalra, A., Garde, S. & Hummer, G. Osmotic water transport through carbon nanotube membranes. Proc. Natl Acad. Sci. USA 100, 10175–10180 (2003).

    Article  CAS  Google Scholar 

  17. Dellago, C., Naor, M. M. & Hummer, G. Proton transport through water-filled carbon nanotubes. Phys. Rev. Lett. 90, 105902 (2003).

    Article  Google Scholar 

  18. Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    Article  CAS  Google Scholar 

  19. Choi, W. et al. Diameter-dependent ion transport through the interior of isolated single-walled carbon nanotubes. Nature Commun. 4, 2397 (2013).

    Article  Google Scholar 

  20. Geng, J. et al. Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes. Nature 514, 612–618 (2014).

    Article  CAS  Google Scholar 

  21. Pascal, T. A., Goddard, W. A. & Jung, Y. Entropy and the driving force for the filling of carbon nanotubes with water. Proc. Natl Acad. Sci. USA 108, 11794–11798 (2011).

    Article  CAS  Google Scholar 

  22. Weisman, R. B. & Bachilo, S. M. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot. Nano Lett. 3, 1235–1238 (2003).

    Article  CAS  Google Scholar 

  23. Deamer, D. W. & Nichols, J. W. Proton-hydroxide permeability of liposomes. Proc. Natl Acad. Sci. USA 80, 165–168 (1983).

    Article  CAS  Google Scholar 

  24. Han, J. Y. & Burgess, K. Fluorescent indicators for intracellular pH. Chem. Rev. 110, 2709–2728 (2010).

    Article  CAS  Google Scholar 

  25. Gensure, R. H., Zeidel, M. L. & Hill, W. G. Lipid raft components cholesterol and sphingomyelin increase H+/OH- permeability of phosphatidylcholine membranes. Biochem. J. 398, 485–495 (2006).

    Article  CAS  Google Scholar 

  26. Krishnamoorthy, G. Temperature jump as a new technique to study the kinetics of fast transport of protons across membranes. Biochemistry 25, 6666–6671 (1986).

    Article  CAS  Google Scholar 

  27. Day, T. J. F., Soudackov, A. V., Cuma, M., Schmitt, U. W. & Voth, G. A. A second generation multistate empirical valence bond model for proton transport in aqueous systems. J. Chem. Phys. 117, 5839–5849 (2002).

    Article  CAS  Google Scholar 

  28. Pomes, R. & Roux, B. Free energy profiles for H+ conduction along hydrogen-bonded chains of water molecules. Biophys. J. 75, 33–40 (1998).

    Article  CAS  Google Scholar 

  29. Braun-Sand, S., Burykin, A., Chu, Z. T. & Warshel, A. Realistic simulations of proton transport along the gramicidin channel: Demonstrating the importance of solvation effects. J. Phys. Chem. B 109, 583–592 (2005).

    Article  CAS  Google Scholar 

  30. Dellago, C. & Hummer, G. Kinetics and mechanism of proton transport across membrane nanopores. Phys. Rev. Lett. 97, 245901 (2006).

    Article  Google Scholar 

  31. Akeson, M. & Deamer, D. W. Proton conductance by the gramicidin water wire. Model for proton conductance in the F1F0 ATPases? Biophys. J. 60, 101–109 (1991).

    Article  CAS  Google Scholar 

  32. Chernyshev, A. & Cukierman, S. Thermodynamic view of activation energies of proton transfer in various gramicidin A channels. Biophys. J. 82, 182–192 (2002).

    Article  CAS  Google Scholar 

  33. Golovanov, A. P. et al. The divalent cation-binding sites of gramicidin-a transmembrane ion-channel. Biopolym. 31, 425–434 (1991).

    Article  CAS  Google Scholar 

  34. Mclanugh, S. G., Szabo, G., Eisenman, G. & Ciani, S. M. Surface charge and conductance of phospholipid membranes. Proc. Natl Acad. Sci. USA 67, 1268–1275 (1970).

    Article  Google Scholar 

  35. Liu, Z. F. et al. Organizing single-walled carbon nanotubes on gold using a wet chemical self-assembling technique. Langmuir 16, 3569–3573 (2000).

    Article  CAS  Google Scholar 

  36. Minati, L. et al. Characterization of thiol-functionalized carbon nanotubes on gold surfaces. Surf. Sci. 604, 1414–1419 (2010).

    Article  CAS  Google Scholar 

  37. Stewart, J. C. Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Analyt. Biochem. 104, 10–14 (1980).

    Article  CAS  Google Scholar 

  38. Huang, C. & Mason, J. T. Geometric packing constraints in egg phosphatidylcholine vesicles. Proc. Natl Acad. Sci. USA 75, 308–310 (1978).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A.T. Pham for the images used in Fig. 1b,c, and Y. Yu for assistance with cryo-EM imaging. A.B. acknowledges SULI summer internship programme funding from the US Department of Energy. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award SCW0972. Work at the Lawrence Livermore National Laboratory was performed under the auspices of the US Department of Energy under Contract DE-AC52-07NA27344. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

R.H.T and A.N. designed the experiments, R.H.T. performed the proton transport experiments. K.K. and R.H.T. performed Raman characterization studies. F.I.A. and R.H.T. performed the TEM and cryogenic TEM characterization. A.B., K.K. and R.H.T. synthesized the CNT porins. R.H.T. and A.N. wrote the manuscript, and all authors commented on it.

Corresponding author

Correspondence to Aleksandr Noy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1988 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tunuguntla, R., Allen, F., Kim, K. et al. Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins. Nature Nanotech 11, 639–644 (2016). https://doi.org/10.1038/nnano.2016.43

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.43

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing