Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synthesis and characterization of triangulene

Abstract

Triangulene, the smallest triplet-ground-state polybenzenoid (also known as Clar's hydrocarbon), has been an enigmatic molecule ever since its existence was first hypothesized1. Despite containing an even number of carbons (22, in six fused benzene rings), it is not possible to draw Kekulé-style resonant structures for the whole molecule: any attempt results in two unpaired valence electrons2. Synthesis and characterization of unsubstituted triangulene has not been achieved because of its extreme reactivity1, although the addition of substituents has allowed the stabilization and synthesis of the triangulene core3,4 and verification of the triplet ground state via electron paramagnetic resonance measurements5. Here we show the on-surface generation of unsubstituted triangulene that consists of six fused benzene rings. The tip of a combined scanning tunnelling and atomic force microscope (STM/AFM) was used to dehydrogenate precursor molecules. STM measurements in combination with density functional theory (DFT) calculations confirmed that triangulene keeps its free-molecule properties on the surface, whereas AFM measurements resolved its planar, threefold symmetric molecular structure. The unique topology of such non-Kekulé hydrocarbons results in open-shell π-conjugated graphene fragments6 that give rise to high-spin ground states, potentially useful in organic spintronic devices7,8. Our generation method renders manifold experiments possible to investigate triangulene and related open-shell fragments at the single-molecule level.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme that illustrates the generation of triangulene 1.
Figure 2: Comparison of different molecular species on NaCl.
Figure 3: Characterization of triangulene on Cu and Xe.

Similar content being viewed by others

References

  1. Clar, E. & Stewart, D. G. Aromatic hydrocarbons. LXV. Triangulene derivatives 1. J. Am. Chem. Soc. 75, 2667–2672 (1953).

    Article  CAS  Google Scholar 

  2. Randić, M. Aromaticity of polycyclic conjugated hydrocarbons. Chem. Rev. 103, 3449–3606 (2003).

    Article  Google Scholar 

  3. Allinson, G., Bushby, R. J., Paillaud, J. L., Oduwole, D. & Sales, K. ESR spectrum of a stable triplet π biradical: trioxytriangulene. J. Am. Chem. Soc. 115, 2062–2064 (1993).

    Article  CAS  Google Scholar 

  4. Allinson, G., Bushby, R. J., Jesudason, M. V., Paillaud, J. L. & Taylor, N . The synthesis of singlet ground state derivatives of non-Kekulé polynuclear aromatics. J. Chem. Soc. Perkin Trans. 2 147–156 (1997).

  5. Inoue, J. et al. The first detection of a Clar's hydrocarbon, 2,6,10-tri-tert-butyltriangulene: a ground-state triplet of non-Kekulé polynuclear benzenoid hydrocarbon. J. Am. Chem. Soc. 123, 12702–12703 (2001).

    Article  CAS  Google Scholar 

  6. Morita, Y., Suzuki, S., Sato, K. & Takui, T. Synthetic organic spin chemistry for structurally well-defined open-shell graphene fragments. Nat. Chem. 3, 197–204 (2011).

    Article  CAS  Google Scholar 

  7. Bullard, Z., Girão, E. C., Owens, J. R., Shelton, W. A. & Meunier, V. Improved all-carbon spintronic device design. Sci. Rep. 5, 7634 (2015).

    Article  CAS  Google Scholar 

  8. Raman, K. V. et al. Interface-engineered templates for molecular spin memory devices. Nature 493, 509–513 (2013).

    Article  CAS  Google Scholar 

  9. Albrecht, F., Neu, M., Quest, C., Swart, I. & Repp, J. Formation and characterization of a molecule–metal–molecule bridge in real space. J. Am. Chem. Soc. 135, 9200–9203 (2013).

    Article  CAS  Google Scholar 

  10. De Oteyza, D. G. et al. Direct imaging of covalent bond structure in single-molecule chemical reactions. Science 340, 1434–1437 (2013).

    Article  CAS  Google Scholar 

  11. Ruffieux, P. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–492 (2016).

    Article  CAS  Google Scholar 

  12. Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

    Article  CAS  Google Scholar 

  13. Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).

    Article  CAS  Google Scholar 

  14. Pavliček, N. et al. On-surface generation and imaging of arynes by atomic force microscopy. Nat. Chem. 7, 623–628 (2015).

    Article  Google Scholar 

  15. Schuler, B. et al. Reversible Bergman cyclization by atomic manipulation. Nat. Chem. 8, 220–224 (2016).

    Article  CAS  Google Scholar 

  16. Repp, J., Meyer, G., Stojković, S. M., Gourdon, A. & Joachim, C. Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 94, 026803 (2005).

    Article  Google Scholar 

  17. Mistry, A. et al. The synthesis and STM/AFM imaging of ‘Olympicene’ benzo[cd]pyrenes. Chem. Eur. J. 21, 2011–2018 (2014).

    Article  Google Scholar 

  18. Schuler, B. et al. Adsorption geometry determination of single molecules by atomic force microscopy. Phys. Rev. Lett. 111, 106103 (2013).

    Article  Google Scholar 

  19. Gaudioso, J., Lee, H. J. & Ho, W. Vibrational analysis of single molecule chemistry: ethylene dehydrogenation on Ni(110). J. Am. Chem. Soc. 121, 8479–8485 (1999).

    Article  CAS  Google Scholar 

  20. Bordwell, F. G., Cheng, J. P., Satish, A. V. & Twyman, C. L. Acidities and hemolytic bond dissociation energies (BDEs) of benzyl-type carbon–hydrogen bonds in sterically congested substrates. J. Org. Chem. 57, 6542–6546 (1992).

    Article  CAS  Google Scholar 

  21. Van Scheppingen, W., Dorrestijn, E., Arends, I., Mulder, P. & Korth, H.-G. Carbon–oxygen bond strength in diphenyl ether and phenyl vinyl ether: an experimental and computational study. J. Phys. Chem. A 101, 5404–5411 (1997).

    Article  CAS  Google Scholar 

  22. Sonnleitner, T., Swart, I., Pavliček, N., Pöllmann, A. & Repp, J. Molecular symmetry governs surface diffusion. Phys. Rev. Lett. 107, 186103 (2011).

    Article  Google Scholar 

  23. Hedin, L. New method for calculating the one-particle Green's function with application to the electron-gas problem. Phys. Rev. 139, A796–A823 (1965).

    Article  Google Scholar 

  24. Wolf, M., Knoesel, E. & Hertel, T. Ultrafast dynamics of electrons in image-potential states on clean and Xe-covered Cu(111). Phys. Rev. B 54, R5295–R5298 (1996).

    Article  CAS  Google Scholar 

  25. Bennewitz, R. et al. Aspects of dynamic force microscopy on NaCl/Cu(111): resolution, tip–sample interactions and cantilever oscillation characteristics. Surf. Interface Anal. 27, 462–466 (1999).

    Article  CAS  Google Scholar 

  26. Pavliček, N., Repp, J., Swart, I., Meyer, G. & Niedenführ, J. Symmetry dependence of vibration-assisted tunneling. Phys. Rev. Lett. 110, 136101 (2013).

    Article  Google Scholar 

  27. Repp, J., Meyer, G., Olsson, F. E. & Persson, M. Controlling the charge state of individual gold adatoms. Science 305, 493–495 (2004).

    Article  CAS  Google Scholar 

  28. Swart, I., Sonnleitner, T. & Repp, J. Charge state control of molecules reveals modification of the tunneling barrier with intramolecular contrast. Nano Lett. 11, 1580–1584 (2011).

    Article  CAS  Google Scholar 

  29. Qiu, X. H., Nazin, G. V. & Ho, W. Vibronic states in single molecule electron transport. Phys. Rev. Lett. 92, 206102 (2004).

    Article  CAS  Google Scholar 

  30. Repp, J., Meyer, G., Paavilainen, S., Olsson, F. E. & Persson, M. Imaging bond formation between a gold atom and pentacene on an insulating surface. Science 312, 1196–1199 (2006).

    Article  CAS  Google Scholar 

  31. Tersoff, J. & Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985).

    Article  CAS  Google Scholar 

  32. Heinrich, A. J., Gupta, J. A., Lutz, C. P. & Eigler, D. M. Single-atom spin-flip spectroscopy. Science 306, 466–469 (2004).

    Article  CAS  Google Scholar 

  33. Hirjibehedin, C. F., Lutz, C. P. & Heinrich, A. J. Spin coupling in engineered atomic structures. Science 312, 1021–1024 (2006).

    Article  CAS  Google Scholar 

  34. Baumann, S. et al. Electron paramagnetic resonance of individual atoms on a surface. Science 350, 417–420 (2015).

    Article  CAS  Google Scholar 

  35. Giessibl, F. J. High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. Appl. Phys. Lett. 73, 3956–3958 (1998).

    Article  CAS  Google Scholar 

  36. Giessibl, F. J. Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003).

    Article  CAS  Google Scholar 

  37. Albrecht, T. R., Grütter, P., Horne, D. & Rugar, D. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69, 668–673 (1991).

    Article  Google Scholar 

  38. Bennewitz, R., Foster, A. S., Kantorovich, L. N. & Bammerlin, M. Atomically resolved edges and kinks of NNaCl islands on Cu(111): experiment and theory. Phys. Rev. B 62, 2074–2084 (2000).

    Article  CAS  Google Scholar 

  39. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    Article  Google Scholar 

  40. Blum, V. et al. Ab initio molecular simulations with numeric atom-centered orbitals. Comp. Phys. Comm. 180, 2175–2196 (2009).

    Article  CAS  Google Scholar 

  41. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  42. Tkatchenko, A. & Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 073005 (2009).

    Article  Google Scholar 

  43. Onida, G., Reining, L. & Rubio, A. Electronic excitations: density-functional versus many-body Green's function approaches. Rev. Mod. Phys. 74, 601–659 (2002).

    Article  CAS  Google Scholar 

  44. Ruiz, V. G., Liu, W., Zojer, E., Scheffler, M. & Tkatchenko, A. Density-functional theory with screened van der Waals interactions for the modeling of hybrid inorganic–organic systems. Phys. Rev. Lett. 108, 146103 (2012).

    Article  Google Scholar 

  45. Ren, X. et al. Resolution-of-identity approach to Hartree–Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions. New J. Phys. 14, 053020 (2012).

    Article  Google Scholar 

  46. Yang, L., Park, C.-H., Son, Y.-W., Cohen, M. L. & Louie, S. G. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007).

    Article  Google Scholar 

  47. Rostgaard, C., Jacobsen, K. W. & Thygesen, K. S. Fully self-consistent GW calculations for molecules. Phys. Rev. B 81, 085103 (2010).

    Article  Google Scholar 

  48. Neaton, J. B., Hybertsen, M. S. & Louie, S. G. Renormalization of molecular electronic levels at metal–molecule interfaces. Phys. Rev. Lett. 97, 216405 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge R. Allenspach, D. Peña, J. Repp and I. Tavernelli for valuable comments on the manuscript. The research leading to these results received funding from the European Research Council (ERC) Advanced Grant CEMAS (agreement no. 291194), the ERC Consolidator Grant AMSEL (682144), the European Union project PAMS (610446) and the Initial Training Network QTea (317485).

Author information

Authors and Affiliations

Authors

Contributions

N.P., Z.M., L.G. and G.M. performed the STM/AFM experiments; N.P. and N.M. performed the DFT calculations; A.M. and D.J.F. synthesized the precursor molecules; all the authors analysed the data and contributed to the manuscript.

Corresponding author

Correspondence to Niko Pavliček.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6895 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavliček, N., Mistry, A., Majzik, Z. et al. Synthesis and characterization of triangulene. Nature Nanotech 12, 308–311 (2017). https://doi.org/10.1038/nnano.2016.305

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.305

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing