Abstract
Triangulene, the smallest triplet-ground-state polybenzenoid (also known as Clar's hydrocarbon), has been an enigmatic molecule ever since its existence was first hypothesized1. Despite containing an even number of carbons (22, in six fused benzene rings), it is not possible to draw Kekulé-style resonant structures for the whole molecule: any attempt results in two unpaired valence electrons2. Synthesis and characterization of unsubstituted triangulene has not been achieved because of its extreme reactivity1, although the addition of substituents has allowed the stabilization and synthesis of the triangulene core3,4 and verification of the triplet ground state via electron paramagnetic resonance measurements5. Here we show the on-surface generation of unsubstituted triangulene that consists of six fused benzene rings. The tip of a combined scanning tunnelling and atomic force microscope (STM/AFM) was used to dehydrogenate precursor molecules. STM measurements in combination with density functional theory (DFT) calculations confirmed that triangulene keeps its free-molecule properties on the surface, whereas AFM measurements resolved its planar, threefold symmetric molecular structure. The unique topology of such non-Kekulé hydrocarbons results in open-shell π-conjugated graphene fragments6 that give rise to high-spin ground states, potentially useful in organic spintronic devices7,8. Our generation method renders manifold experiments possible to investigate triangulene and related open-shell fragments at the single-molecule level.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Discovery and construction of surface kagome electronic states induced by p-d electronic hybridization in Co3Sn2S2
Nature Communications Open Access 26 August 2023
-
Orbital-symmetry effects on magnetic exchange in open-shell nanographenes
Nature Communications Open Access 09 August 2023
-
On-surface synthesis of enetriynes
Nature Communications Open Access 06 March 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Clar, E. & Stewart, D. G. Aromatic hydrocarbons. LXV. Triangulene derivatives 1. J. Am. Chem. Soc. 75, 2667–2672 (1953).
Randić, M. Aromaticity of polycyclic conjugated hydrocarbons. Chem. Rev. 103, 3449–3606 (2003).
Allinson, G., Bushby, R. J., Paillaud, J. L., Oduwole, D. & Sales, K. ESR spectrum of a stable triplet π biradical: trioxytriangulene. J. Am. Chem. Soc. 115, 2062–2064 (1993).
Allinson, G., Bushby, R. J., Jesudason, M. V., Paillaud, J. L. & Taylor, N . The synthesis of singlet ground state derivatives of non-Kekulé polynuclear aromatics. J. Chem. Soc. Perkin Trans. 2 147–156 (1997).
Inoue, J. et al. The first detection of a Clar's hydrocarbon, 2,6,10-tri-tert-butyltriangulene: a ground-state triplet of non-Kekulé polynuclear benzenoid hydrocarbon. J. Am. Chem. Soc. 123, 12702–12703 (2001).
Morita, Y., Suzuki, S., Sato, K. & Takui, T. Synthetic organic spin chemistry for structurally well-defined open-shell graphene fragments. Nat. Chem. 3, 197–204 (2011).
Bullard, Z., Girão, E. C., Owens, J. R., Shelton, W. A. & Meunier, V. Improved all-carbon spintronic device design. Sci. Rep. 5, 7634 (2015).
Raman, K. V. et al. Interface-engineered templates for molecular spin memory devices. Nature 493, 509–513 (2013).
Albrecht, F., Neu, M., Quest, C., Swart, I. & Repp, J. Formation and characterization of a molecule–metal–molecule bridge in real space. J. Am. Chem. Soc. 135, 9200–9203 (2013).
De Oteyza, D. G. et al. Direct imaging of covalent bond structure in single-molecule chemical reactions. Science 340, 1434–1437 (2013).
Ruffieux, P. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–492 (2016).
Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).
Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).
Pavliček, N. et al. On-surface generation and imaging of arynes by atomic force microscopy. Nat. Chem. 7, 623–628 (2015).
Schuler, B. et al. Reversible Bergman cyclization by atomic manipulation. Nat. Chem. 8, 220–224 (2016).
Repp, J., Meyer, G., Stojković, S. M., Gourdon, A. & Joachim, C. Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 94, 026803 (2005).
Mistry, A. et al. The synthesis and STM/AFM imaging of ‘Olympicene’ benzo[cd]pyrenes. Chem. Eur. J. 21, 2011–2018 (2014).
Schuler, B. et al. Adsorption geometry determination of single molecules by atomic force microscopy. Phys. Rev. Lett. 111, 106103 (2013).
Gaudioso, J., Lee, H. J. & Ho, W. Vibrational analysis of single molecule chemistry: ethylene dehydrogenation on Ni(110). J. Am. Chem. Soc. 121, 8479–8485 (1999).
Bordwell, F. G., Cheng, J. P., Satish, A. V. & Twyman, C. L. Acidities and hemolytic bond dissociation energies (BDEs) of benzyl-type carbon–hydrogen bonds in sterically congested substrates. J. Org. Chem. 57, 6542–6546 (1992).
Van Scheppingen, W., Dorrestijn, E., Arends, I., Mulder, P. & Korth, H.-G. Carbon–oxygen bond strength in diphenyl ether and phenyl vinyl ether: an experimental and computational study. J. Phys. Chem. A 101, 5404–5411 (1997).
Sonnleitner, T., Swart, I., Pavliček, N., Pöllmann, A. & Repp, J. Molecular symmetry governs surface diffusion. Phys. Rev. Lett. 107, 186103 (2011).
Hedin, L. New method for calculating the one-particle Green's function with application to the electron-gas problem. Phys. Rev. 139, A796–A823 (1965).
Wolf, M., Knoesel, E. & Hertel, T. Ultrafast dynamics of electrons in image-potential states on clean and Xe-covered Cu(111). Phys. Rev. B 54, R5295–R5298 (1996).
Bennewitz, R. et al. Aspects of dynamic force microscopy on NaCl/Cu(111): resolution, tip–sample interactions and cantilever oscillation characteristics. Surf. Interface Anal. 27, 462–466 (1999).
Pavliček, N., Repp, J., Swart, I., Meyer, G. & Niedenführ, J. Symmetry dependence of vibration-assisted tunneling. Phys. Rev. Lett. 110, 136101 (2013).
Repp, J., Meyer, G., Olsson, F. E. & Persson, M. Controlling the charge state of individual gold adatoms. Science 305, 493–495 (2004).
Swart, I., Sonnleitner, T. & Repp, J. Charge state control of molecules reveals modification of the tunneling barrier with intramolecular contrast. Nano Lett. 11, 1580–1584 (2011).
Qiu, X. H., Nazin, G. V. & Ho, W. Vibronic states in single molecule electron transport. Phys. Rev. Lett. 92, 206102 (2004).
Repp, J., Meyer, G., Paavilainen, S., Olsson, F. E. & Persson, M. Imaging bond formation between a gold atom and pentacene on an insulating surface. Science 312, 1196–1199 (2006).
Tersoff, J. & Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985).
Heinrich, A. J., Gupta, J. A., Lutz, C. P. & Eigler, D. M. Single-atom spin-flip spectroscopy. Science 306, 466–469 (2004).
Hirjibehedin, C. F., Lutz, C. P. & Heinrich, A. J. Spin coupling in engineered atomic structures. Science 312, 1021–1024 (2006).
Baumann, S. et al. Electron paramagnetic resonance of individual atoms on a surface. Science 350, 417–420 (2015).
Giessibl, F. J. High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. Appl. Phys. Lett. 73, 3956–3958 (1998).
Giessibl, F. J. Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003).
Albrecht, T. R., Grütter, P., Horne, D. & Rugar, D. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69, 668–673 (1991).
Bennewitz, R., Foster, A. S., Kantorovich, L. N. & Bammerlin, M. Atomically resolved edges and kinks of NNaCl islands on Cu(111): experiment and theory. Phys. Rev. B 62, 2074–2084 (2000).
Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).
Blum, V. et al. Ab initio molecular simulations with numeric atom-centered orbitals. Comp. Phys. Comm. 180, 2175–2196 (2009).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Tkatchenko, A. & Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 073005 (2009).
Onida, G., Reining, L. & Rubio, A. Electronic excitations: density-functional versus many-body Green's function approaches. Rev. Mod. Phys. 74, 601–659 (2002).
Ruiz, V. G., Liu, W., Zojer, E., Scheffler, M. & Tkatchenko, A. Density-functional theory with screened van der Waals interactions for the modeling of hybrid inorganic–organic systems. Phys. Rev. Lett. 108, 146103 (2012).
Ren, X. et al. Resolution-of-identity approach to Hartree–Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions. New J. Phys. 14, 053020 (2012).
Yang, L., Park, C.-H., Son, Y.-W., Cohen, M. L. & Louie, S. G. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007).
Rostgaard, C., Jacobsen, K. W. & Thygesen, K. S. Fully self-consistent GW calculations for molecules. Phys. Rev. B 81, 085103 (2010).
Neaton, J. B., Hybertsen, M. S. & Louie, S. G. Renormalization of molecular electronic levels at metal–molecule interfaces. Phys. Rev. Lett. 97, 216405 (2006).
Acknowledgements
We acknowledge R. Allenspach, D. Peña, J. Repp and I. Tavernelli for valuable comments on the manuscript. The research leading to these results received funding from the European Research Council (ERC) Advanced Grant CEMAS (agreement no. 291194), the ERC Consolidator Grant AMSEL (682144), the European Union project PAMS (610446) and the Initial Training Network QTea (317485).
Author information
Authors and Affiliations
Contributions
N.P., Z.M., L.G. and G.M. performed the STM/AFM experiments; N.P. and N.M. performed the DFT calculations; A.M. and D.J.F. synthesized the precursor molecules; all the authors analysed the data and contributed to the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 6895 kb)
Rights and permissions
About this article
Cite this article
Pavliček, N., Mistry, A., Majzik, Z. et al. Synthesis and characterization of triangulene. Nature Nanotech 12, 308–311 (2017). https://doi.org/10.1038/nnano.2016.305
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nnano.2016.305
This article is cited by
-
Quantum nanomagnets in on-surface metal-free porphyrin chains
Nature Chemistry (2023)
-
On-surface synthesis of enetriynes
Nature Communications (2023)
-
Orbital-symmetry effects on magnetic exchange in open-shell nanographenes
Nature Communications (2023)
-
Discovery and construction of surface kagome electronic states induced by p-d electronic hybridization in Co3Sn2S2
Nature Communications (2023)
-
Selective activation of four quasi-equivalent C–H bonds yields N-doped graphene nanoribbons with partial corannulene motifs
Nature Communications (2022)