Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Utilizing the power of Cerenkov light with nanotechnology

Abstract

The characteristic blue glow of Cerenkov luminescence (CL) arises from the interaction between a charged particle travelling faster than the phase velocity of light and a dielectric medium, such as water or tissue. As CL emanates from a variety of sources, such as cosmic events, particle accelerators, nuclear reactors and clinical radionuclides, it has been used in applications such as particle detection, dosimetry, and medical imaging and therapy. The combination of CL and nanoparticles for biomedicine has improved diagnosis and therapy, especially in oncological research. Although radioactive decay itself cannot be easily modulated, the associated CL can be through the use of nanoparticles, thus offering new applications in biomedical research. Advances in nanoparticles, metamaterials and photonic crystals have also yielded new behaviours of CL. Here, we review the physics behind Cerenkov luminescence and associated applications in biomedicine. We also show that by combining advances in nanotechnology and materials science with CL, new avenues for basic and applied sciences have opened.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Cerenkov mechanism for blue-weighted luminescence.
Figure 2: Challenges of in vivo imaging of CL, highlighting the utility of photoluminescent nanoparticles.
Figure 3: Nanoparticle combinations with CL allow improved in vivo imaging.
Figure 4: Clinical small-molecule radiotracers and nanoparticles offer ease of clinical translation.
Figure 5: CL emitters can be incorporated into nanoparticles for high specific activity, multimodal probes.
Figure 6: Smart, activatable nanoparticles allow in vivo modulation of radioactive signal along with therapeutic opportunities.
Figure 7: The Cerenkov mechanism can be modified in unique ways through interaction with metamaterials and photonic crystals.

Similar content being viewed by others

References

  1. Heaviside, O. The electromagnetic effect of a moving charge. The Electrician Vol. 2 83–84 (1888).

  2. Cerenkov, P. Visible light from pure liquids under the impact of gamma-rays. C. R. Acad. Sci. Urss 3, 451–457 (1934).

    Google Scholar 

  3. Bolotovskii, B. M. Vavilov-Cherenkov radiation: its discovery and application. Phys-Usp. 52, 1099–1110 (2009).

    Article  CAS  Google Scholar 

  4. Čerenkov, P. A. Visible radiation produced by electrons moving in a medium with velocities exceeding that of light. Phys. Rev. 52, 378–379 (1937).

    Article  Google Scholar 

  5. Frank, I. & Tamm, I. Coherent visible radiation of fast electrons passing through matter. C. R. Acad. Sci. Urss 14, 109–114 (1937).

    CAS  Google Scholar 

  6. Ginzburg, V. L. The quantum theory of radiation of an electron uniformly moving in a medium. J. Phys. USSR 2, 441–452 (1940).

    CAS  Google Scholar 

  7. Choppin, G., Liljenzin, J.-O., Rydberg, J. & Ekberg, C. Radiochemistry and Nuclear Chemistry 4th edn (Academic Press, 2013).

    Google Scholar 

  8. Kaminer, I. et al. Quantum Cerenkov radiation: spectral cutoffs and the role of spin and orbital angular momentum. Phys. Rev. X 6, 011006 (2015).

    Google Scholar 

  9. Kobzev, A. P. The mechanism of Vavilov-Cherenkov radiation. Phys. Part. Nuclei 41, 452–470 (2010).

    Article  CAS  Google Scholar 

  10. Kobzev, A. P. On the radiation mechanism of a uniformly moving charge. Phys. Part. Nuclei 45, 628–653 (2014).

    Article  Google Scholar 

  11. Thorek, D. et al. Cerenkov imaging — a new modality for molecular imaging. Am. J. Nucl. Med. Mol. Imaging 2, 163–173 (2012).

    Google Scholar 

  12. Gill, R. K., Mitchell, G. S. & Cherry, S. R. Computed Cerenkov luminescence yields for radionuclides used in biology and medicine. Phys. Med. Biol. 60, 4263–4280 (2015).

    Article  CAS  Google Scholar 

  13. Krizan, P. Recent progress in Cerenkov counters. IEEE Trans. Nucl. Sci. 48, 941–949 (2001).

    Article  CAS  Google Scholar 

  14. Abeysekara, A. U. et al. Sensitivity of the high altitude water Cherenkov detector to sources of multi-TeV gamma rays. Astropart. Phys. 50–52, 26–32 (2013).

    Article  Google Scholar 

  15. Chamberlain, O., Segre, E., Wiegand, C. & Ypsilantis, T. Observation of antiprotons. Phys. Rev. 100, 947–950 (1955).

    Article  CAS  Google Scholar 

  16. Aubert, J. J. et al. Experimental observation of a heavy particle. J. Phys. Rev. Lett. 33, 1404–1406 (1974).

    Article  CAS  Google Scholar 

  17. Augustin, J. E. et al. Discovery of a narrow resonance in e+e annihilation. Phys. Rev. Lett. 33, 1406–1408 (1974).

    Article  CAS  Google Scholar 

  18. Robertson, R. et al. Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys. Med. Biol. 54, N355–N365 (2009). The first preclinical demonstration of in vivo CLI using injected radiotracers.

    Article  CAS  Google Scholar 

  19. Beattie, B. J. et al. Quantitative modeling of Cerenkov light production efficiency from medical radionuclides. PloS ONE 7, e31402 (2012).

    Article  CAS  Google Scholar 

  20. Boschi, F. et al. In vivo (18)F-FDG tumour uptake measurements in small animals using Cerenkov radiation. Eur. J. Nucl. Med. Mol. Imaging 38, 120–127 (2011).

    Article  Google Scholar 

  21. Mitchell, G. S., Gill, R. K., Boucher, D. L., Li, C. & Cherry, S. R. In vivo Cerenkov luminescence imaging: a new tool for molecular imaging. Phil. Trans. R. Soc. A 369, 4605–4619 (2011).

    Article  CAS  Google Scholar 

  22. Lohrmann, C. et al. Cerenkov luminescence imaging for radiation dose calculation of a 90Y-labeled gastrin-releasing peptide receptor antagonist. J. Nucl. Med. 56, 805–811 (2015).

    Article  CAS  Google Scholar 

  23. Pandya, D. N. et al. Preliminary therapy evaluation of 225Ac-DOTA-c(RGDyK) demonstrates that Cerenkov radiation derived from 225Ac daughter decay can be detected by optical imaging for in vivo tumor visualization. Theranostics 6, 698–709 (2016).

    Article  CAS  Google Scholar 

  24. Spinelli, A. E. et al. First human Cerenkography. J. Biomed. Opt. 18, 20502 (2013).

    Article  CAS  Google Scholar 

  25. Thorek, D. L., Riedl, C. C. & Grimm, J. Clinical Cerenkov luminescence imaging of 18F-FDG. J. Nucl. Med. 55, 95–98 (2014).

    Article  CAS  Google Scholar 

  26. Chin, P. T. et al. Optical imaging as an expansion of nuclear medicine: Cerenkov-based luminescence vs fluorescence-based luminescence. Eur. J. Nucl. Med. Mol. Imaging 40, 1283–1291 (2013).

    Article  CAS  Google Scholar 

  27. Thorek, D. L., Ogirala, A., Beattie, B. J. & Grimm, J. Quantitative imaging of disease signatures through radioactive decay signal conversion. Nat. Med. 19, 1345–1350 (2013). A paper that shows how CL combinations with nanoparticle allows in vivo activatable molecular imaging.

    Article  CAS  Google Scholar 

  28. Dothager, R. S., Goiffon, R. J., Jackson, E., Harpstrite, S. & Piwnica-Worms, D. Cerenkov radiation energy transfer (CRET) imaging: a novel method for optical imaging of PET isotopes in biological systems. PloS ONE 5, e13300 (2010). A paper showing how combining photoluminescent nanoparticles with CL allows deeper optical imaging depth.

    Article  CAS  Google Scholar 

  29. Liu, H. et al. Radiation-luminescence-excited quantum dots for in vivo multiplexed optical imaging. Small 6, 1087–1091 (2010).

    Article  CAS  Google Scholar 

  30. Hu, Z. et al. In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging. Nat. Commun. 6, 7560 (2015).

    Article  Google Scholar 

  31. Ma, X. et al. Enhancement of Cerenkov luminescence imaging by dual excitation of Er3+, Yb3+-doped rare-earth microparticles. PloS ONE 8, e77926 (2013).

    Article  CAS  Google Scholar 

  32. Kotagiri, N., Niedzwiedzki, D. M., Ohara, K. & Achilefu, S. Activatable probes based on distance-dependent luminescence associated with Cerenkov radiation. Angew. Chem. Int. Ed. 52, 7756–7760 (2013).

    Article  CAS  Google Scholar 

  33. Kim, J. et al. Vivid tumor imaging utilizing liposome-carried bimodal radiotracer. ACS Med. Chem. Lett. 5, 390–394 (2014).

    Article  CAS  Google Scholar 

  34. Perez-Medina, C. et al. A modular labeling strategy for in vivo PET and near-infrared fluorescence imaging of nanoparticle tumor targeting. J. Nucl. Med. 55, 1706–1711 (2014).

    Article  CAS  Google Scholar 

  35. Rieffel, J. et al. Hexamodal imaging with porphyrin-phospholipid-coated upconversion nanoparticles. Adv. Mater. 27, 1785–1790 (2015).

    Article  CAS  Google Scholar 

  36. Goel, S., Chen, F., Ehlerding, E. B. & Cai, W. Intrinsically radiolabeled nanoparticles: an emerging paradigm. Small 10, 3825–3830 (2014). A review on advances in radiolabeling nanoparticles for biomedical applications without using chelators or prosthetic groups.

    Article  CAS  Google Scholar 

  37. Shaffer, T. M. et al. Silica nanoparticles as substrates for chelator-free labeling of oxophilic radioisotopes. Nano Lett. 15, 864–868 (2015).

    Article  CAS  Google Scholar 

  38. Chen, F. et al. In vivo integrity and biological fate of chelator-free zirconium-89-labeled mesoporous silica nanoparticles. ACS Nano 9, 7950–7959 (2015).

    Article  CAS  Google Scholar 

  39. Shaffer, T. M. Stable radiolabeling of sulfur-functionalized silica nanoparticles with copper-64. Nano Lett. 16, 5601–5604 (2016).

    Article  CAS  Google Scholar 

  40. Boros, E., Bowen, A. M., Josephson, L., Vasdev, N. & Holland, J. P. Chelate-free metal ion binding and heat-induced radiolabeling of iron oxide nanoparticles. Chem. Sci. 6, 225–236 (2015).

    Article  CAS  Google Scholar 

  41. Madru, R. et al. 68Ga-labeled superparamagnetic iron oxide nanoparticles (SPIONs) for multi-modality PET/MR/Cherenkov luminescence imaging of sentinel lymph nodes. Am. J. Nucl. Med. Mol. Imaging 4, 60–69 (2013).

    Google Scholar 

  42. Lee, S. B. et al. Radionuclide-embedded gold nanoparticles for enhanced dendritic cell-based cancer immunotherapy, sensitive and quantitative tracking of dendritic cells with PET and Cerenkov luminescence. NPG Asia Mater. 8, e281 (2016).

    Article  CAS  Google Scholar 

  43. Lee, S. B. et al. Combined positron emission tomography and Cerenkov luminescence imaging of sentinel lymph nodes using PEGylated radionuclide-embedded gold nanoparticles. Small 12, 4894–4901 (2016).

    Article  CAS  Google Scholar 

  44. Karn, P. R., Cho, W. & Hwang, S. J. Liposomal drug products and recent advances in the synthesis of supercritical fluid-mediated liposomes. Nanomedicine 8, 1529–1548 (2013).

    Article  CAS  Google Scholar 

  45. Black, K. C. et al. In vivo fate tracking of degradable nanoparticles for lung gene transfer using PET and Cerenkov imaging. Biomaterials 98, 53–63 (2016).

    Article  CAS  Google Scholar 

  46. Li, J. et al. Enhancement and wavelength-shifted emission of Cerenkov luminescence using multifunctional microspheres. Phys. Med. Biol. 60, 727–739 (2015).

    Article  CAS  Google Scholar 

  47. Gibson, N. et al. Radiolabelling of engineered nanoparticles for in vitro and in vivo tracing applications using cyclotron accelerators. Arch. Toxicol. 85, 751–773 (2011).

    Article  CAS  Google Scholar 

  48. Paik, T. et al. Shape-controlled synthesis of isotopic yttrium-90-labeled rare earth fluoride nanocrystals for multimodal imaging. ACS Nano 9, 8718–8728 (2015).

    Article  CAS  Google Scholar 

  49. Black, K. C. et al. Radioactive 198Au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution. ACS Nano 8, 4385–4394 (2014).

    Article  CAS  Google Scholar 

  50. Zhao, Y. et al. Copper-64-alloyed gold nanoparticles for cancer imaging: improved radiolabel stability and diagnostic accuracy. Angew. Chem. Int. Ed. 53, 156–159 (2014).

    Article  CAS  Google Scholar 

  51. Zhou, C. et al. Near-infrared emitting radioactive gold nanoparticles with molecular pharmacokinetics. Angew. Chem. Int. Ed. 51, 10118–10122 (2012).

    Article  CAS  Google Scholar 

  52. Hu, H. et al. PET and NIR optical imaging using self-illuminating 64Cu-doped chelator-free gold nanoclusters. Biomaterials 35, 9868–9876 (2014).

    Article  CAS  Google Scholar 

  53. Sun, X. et al. Self-illuminating 64Cu-doped CdSe/ZnS nanocrystals for in vivo tumor imaging. J. Am. Chem. Soc. 136, 1706–1709 (2014).

    Article  CAS  Google Scholar 

  54. Guo, W. et al. Intrinsically radioactive [64Cu]CuInS/ZnS quantum dots for PET and optical imaging: improved radiochemical stability and controllable Cerenkov luminescence. ACS Nano 9, 488–495 (2015).

    Article  CAS  Google Scholar 

  55. Ran, C., Zhang, Z., Hooker, J. & Moore, A. In vivo photoactivation without “light”: use of Cherenkov radiation to overcome the penetration limit of light. Mol. Imaging Biol. 14, 156–162 (2012).

    Article  Google Scholar 

  56. Thorek, D. L., Das, S. & Grimm, J. Molecular imaging using nanoparticle quenchers of Cerenkov luminescence. Small 10, 3729–3734 (2014). A demonstration of combining CL-absorbing iron oxide nanoparticles with radiotracers for molecular imaging.

    Article  CAS  Google Scholar 

  57. Kotagiri, N., Sudlow, G. P., Akers, W. J. & Achilefu, S. Breaking the depth dependency of phototherapy with Cerenkov radiation and low-radiance-responsive nanophotosensitizers. Nat. Nanotech. 10, 370–379 (2015). A demonstration on combining CL with photodynamic therapeutic agents for oncology.

    Article  CAS  Google Scholar 

  58. Kamkaew, A. et al. Cerenkov radiation induced photodynamic therapy using chlorin e6-loaded hollow mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces 8, 26630–26637 (2016).

    Article  CAS  Google Scholar 

  59. Ouyang, Z., Liu, B., Yasmin-Karim, S., Sajo, E. & Ngwa, W. Nanoparticle-aided external beam radiotherapy leveraging the Cerenkov effect. Phys. Med. 32, 944–947 (2016).

    Article  Google Scholar 

  60. Glaser, A. K., Zhang, R., Andreozzi, J. M., Gladstone, D. J. & Pogue, B. W. Cherenkov radiation fluence estimates in tissue for molecular imaging and therapy applications. Phys. Med. Biol. 60, 6701–6718 (2015). A paper calculating photon fluxes from CL with both radiotracers and external beams.

    Article  CAS  Google Scholar 

  61. Chen, H. S. & Chen, M. Flipping photons backward: reversed Cherenkov radiation. Mater. Today 14, 34–41 (2011).

    Article  CAS  Google Scholar 

  62. Soukoulis, C. M. & Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photon. 5, 523–530 (2011).

    Article  CAS  Google Scholar 

  63. Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ɛ and μ. Sov. Phys. Uspekhi 10, 509–514 (1968).

    Article  Google Scholar 

  64. Pendry, J. B., Holden, A. J., Stewart, W. J. & Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett 76, 4773–4776 (1996).

    Article  CAS  Google Scholar 

  65. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000).

    Article  CAS  Google Scholar 

  66. Cortes, C. L., Newman, W., Molesky, S. & Jacob, Z. Quantum nanophotonics using hyperbolic metamaterials. J. Opt. 14, 063001 (2012).

    Article  CAS  Google Scholar 

  67. Landy, N. & Smith, D. R. A full-parameter unidirectional metamaterial cloak for microwaves. Nat. Mater. 12, 25–28 (2013).

    Article  CAS  Google Scholar 

  68. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  CAS  Google Scholar 

  69. Tsakmakidis, K. L., Boardman, A. D. & Hess, O. 'Trapped rainbow' storage of light in metamaterials. Nature 450, 397–401 (2007).

    Article  CAS  Google Scholar 

  70. Shalaev, V. M. Optical negative-index metamaterials. Nat. Photon. 1, 41–48 (2007).

    Article  CAS  Google Scholar 

  71. Soukoulis, C. M., Linden, S. & Wegener, M. Negative refractive index at optical wavelengths. Science 315, 47–49 (2007).

    Article  CAS  Google Scholar 

  72. Lezec, H. J., Dionne, J. A. & Atwater, H. A. Negative refraction at visible frequencies. Science 316, 430–432 (2007).

    Article  CAS  Google Scholar 

  73. Antipov, S. et al. Observation of wakefield generation in left-handed band of metamaterial-loaded waveguide. J. Appl. Phys. 104, 014901 (2008).

    Article  CAS  Google Scholar 

  74. Xi, S. et al. Experimental verification of reversed Cherenkov radiation in left-handed metamaterial. Phys. Rev. Lett. 103, 194801 (2009).

    Article  CAS  Google Scholar 

  75. Ginis, V., Danckaert, J., Veretennicoff, I. & Tassin, P. Controlling Cherenkov radiation with transformation-optical metamaterials. Phys. Rev. Lett. 113, 167402 (2014).

    Article  CAS  Google Scholar 

  76. Lu, J. et al. Cerenkov radiation in materials with negative permittivity and permeability. Opt. Express 11, 723–734 (2003).

    Article  Google Scholar 

  77. So, J. K. et al. Cerenkov radiation in metallic metamaterials. Appl. Phys. Lett. 97, 151107 (2010).

    Article  CAS  Google Scholar 

  78. Kaminer, I. et al. Efficient plasmonic emission by the quantum Cerenkov effect from hot carriers in graphene. Nat. Commun. 7, 11880 (2016). A demonstration that a molecular nanostructure can operate without traditional Cerenkov requirements much like larger nanofabricated devices.

    Article  CAS  Google Scholar 

  79. Fernandes, D. E., Maslovski, S. I. & Silveirinha, M. G. Cherenkov emission in a nanowire material. Phys. Rev. B 85, 155107 (2012).

    Article  CAS  Google Scholar 

  80. So, J.-K. et al. Cerenkov radiation in metallic metamaterials. Appl. Phys. Lett. 97, 151107 (2010).

    Article  CAS  Google Scholar 

  81. Bera, A. et al. Surface-coupling of Cerenkov radiation from a modified metallic metamaterial slab via Brillouin-band folding. Opt. Express 22, 3039–3044 (2014).

    Article  Google Scholar 

  82. Rozin, M. J., Rosen, D. A., Dill, T. J. & Tao, A. R. Colloidal metasurfaces displaying near-ideal and tunable light absorbance in the infrared. Nat. Commun. 6, 7325 (2015).

    Article  CAS  Google Scholar 

  83. Genevet, P. et al. Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial. Nat. Nanotech. 10, 804–809 (2015).

    Article  CAS  Google Scholar 

  84. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    Article  CAS  Google Scholar 

  85. Kremers, C., Chigrin, D. N. & Kroha, J. Theory of Cherenkov radiation in periodic dielectric media: emission spectrum. Phys. Rev. A 79, 013829 (2009).

    Article  CAS  Google Scholar 

  86. Stevens, T. E., Wahlstrand, J. K., Kuhl, J. & Merlin, R. Cherenkov radiation at speeds below the light threshold: phonon-assisted phase matching. Science 291, 627–630 (2001).

    Article  CAS  Google Scholar 

  87. Luo, C., Ibanescu, M., Johnson, S. G. & Joannopoulos, J. D. Cerenkov radiation in photonic crystals. Science 299, 368–371 (2003).

    Article  CAS  Google Scholar 

  88. Anishchenko, S. V. & Baryshevsky, V. G. Cooperative parametric (quasi-Cherenkov) radiation produced by electron bunches in natural or photonic crystals. Nucl. Instrum. Methods B 355, 76–80 (2015).

    Article  CAS  Google Scholar 

  89. Tao, J., Wang, Q. J., Zhang, J. J. & Luo, Y. Reverse surface-polariton Cherenkov radiation. Sci. Rep. 6, 30704 (2016).

    Article  CAS  Google Scholar 

  90. Holland, J. P., Normand, G., Ruggiero, A., Lewis, J. S. & Grimm, J. Intraoperative imaging of positron emission tomographic radiotracers using Cerenkov luminescence emissions. Mol. Imaging 10, 177–186 (2011).

    Article  Google Scholar 

  91. Thorek, D. L. et al. Positron lymphography: multimodal, high-resolution, dynamic mapping and resection of lymph nodes after intradermal injection of 18F-FDG. J. Nucl. Med. 53, 1438–1445 (2012).

    Article  CAS  Google Scholar 

  92. Glaser, A. K. et al. Projection imaging of photon beams by the Cerenkov effect. Med. Phys. 40, 012101 (2013).

    Article  CAS  Google Scholar 

  93. Glaser, A. K. et al. Three-dimensional Cerenkov tomography of energy deposition from ionizing radiation beams. Opt. Lett. 38, 634–636 (2013).

    Article  Google Scholar 

  94. Helo, Y., Kacperek, A., Rosenberg, I., Royle, G. & Gibson, A. P. The physics of Cerenkov light production during proton therapy. Phys. Med. Biol. 59, 7107–7123 (2014).

    Article  CAS  Google Scholar 

  95. Kim, T. I. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013).

    Article  CAS  Google Scholar 

  96. Wu, X. et al. Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano 10, 1060–1066 (2016).

    Article  CAS  Google Scholar 

  97. Kothapalli, S. R., Liu, H., Liao, J. C., Cheng, Z. & Gambhir, S. S. Endoscopic imaging of Cerenkov luminescence. Biomed. Opt. Express 3, 1215–1225 (2012).

    Article  CAS  Google Scholar 

  98. Nuclear Structure and Decay Data (National Nuclear Data Center, 2016).

Download references

Acknowledgements

We acknowledge funding from the National Institutes of Health (NIH) R01EB014944 and R01CA183953 and P30 CA08748, in addition to National Science Foundation (NSF) IGERT traineeship DGS 0965983.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Grimm.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaffer, T., Pratt, E. & Grimm, J. Utilizing the power of Cerenkov light with nanotechnology. Nature Nanotech 12, 106–117 (2017). https://doi.org/10.1038/nnano.2016.301

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.301

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing