Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enhancing nanopore sensing with DNA nanotechnology

Nanopores are on the brink of fundamentally changing DNA sequencing. At the same time, DNA origami provides unprecedented freedom in molecular design. Here, I suggest why a combination of solid-state nanopores and DNA nanotechnology will lead to exciting new experiments.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Challenges of label-free nanopore sensing.
Figure 2: Combining DNA nanotechnology and nanopores.

References

  1. Bayley, H. & Martin, C. R. Chem. Rev. 100, 2575–2594 (2000).

    Article  CAS  Google Scholar 

  2. Li, J. et al. Nature 412, 166–169 (2001).

    Article  CAS  Google Scholar 

  3. Howorka, S. & Siwy, Z. Chem. Soc. Rev. 38, 2360–2384 (2009).

    Article  CAS  Google Scholar 

  4. Yusko, E. C. et al. Nature Nanotech. 6, 253–260 (2011).

    Article  CAS  Google Scholar 

  5. Wei, R., Gatterdam, V., Wieneke, R., Tampe, R. & Rant, U. Nature Nanotech. 7, 257–263 (2012).

    Article  CAS  Google Scholar 

  6. Howorka, S., Cheley, S. & Bayley, H. Nature Biotechnol. 19, 636–639 (2001).

    Article  CAS  Google Scholar 

  7. Iqbal, S. M., Akin, D. & Bashir, R. Nature Nanotech. 2, 243–248 (2007).

    Article  CAS  Google Scholar 

  8. Ivankin, A. et al. ACS Nano 8, 10774–10781 (2014).

    Article  CAS  Google Scholar 

  9. McNally, B. et al. Nano Lett. 10, 2237–2244 (2010).

    Article  CAS  Google Scholar 

  10. Jonsson, M. P. & Dekker, C. Nano Lett. 13, 1029–1033 (2013).

    Article  CAS  Google Scholar 

  11. Thacker, V. V. et al. Nature Commun. 5, 3448 (2014).

    Article  Google Scholar 

  12. Tsutsui, M., Taniguchi, M., Yokota, K. & Kawai, T. Nature Nanotech. 5, 286–290 (2010).

    Article  CAS  Google Scholar 

  13. Ivanov, A. P. et al. Nano Lett. 11, 279–285 (2011).

    Article  CAS  Google Scholar 

  14. Traversi, F. et al. Nature Nanotech. 8, 939–945 (2013).

    Article  CAS  Google Scholar 

  15. Henrickson, S. E., Misakian, M., Robertson, B. & Kasianowicz, J. J. Phys. Rev. Lett. 85, 3057–3060 (2000).

    Article  CAS  Google Scholar 

  16. Kasianowicz, J. J., Henrickson, S. E., Weetall, H. H. & Robertson, B. Anal. Chem. 73, 2268–2272 (2001).

    Article  CAS  Google Scholar 

  17. Rothemund, P. W. K. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  18. Seeman, N. C. Nature 421, 427–431 (2003).

    Article  Google Scholar 

  19. Bell, N. A. & Keyser, U. F. J. Am. Chem. Soc. 137, 2035–2041 (2015).

    Article  CAS  Google Scholar 

  20. Steinbock, L. J., Otto, O., Chimerel, C., Gornall, J. & Keyser, U. F. Nano Lett. 10, 2493–2497 (2010).

    Article  CAS  Google Scholar 

  21. Kowalczyk, S. W., Wells, D. B., Aksimentiev, A. & Dekker, C. Nano Lett. 12, 1038–1044 (2012).

    Article  CAS  Google Scholar 

  22. Plesa, C., van Loo, N., Ketterer, P., Dietz, H. & Dekker, C. Nano Lett. 15, 732–737 (2015).

    Article  CAS  Google Scholar 

  23. Plesa, C. et al. ACS Nano 8, 35–43 (2014).

    Article  CAS  Google Scholar 

  24. Hernandez-Ainsa, S., Misiunas, K., Thacker, V. V., Hemmig, E. A. & Keyser, U. F. Nano Lett. 14, 1270–1274 (2014).

    Article  CAS  Google Scholar 

  25. Li, C. Y. et al. ACS Nano 9, 1420–1433 (2015).

    Article  CAS  Google Scholar 

  26. Bell, N. A. et al. Nano Lett. 12, 512–517 (2012).

    Article  CAS  Google Scholar 

  27. Hernandez-Ainsa, S. et al. ACS Nano 7, 6024–6030 (2013).

    Article  CAS  Google Scholar 

  28. Wei, R., Martin, T. G., Rant, U. & Dietz, H. Angew. Chem. Int. Ed. 51, 4864–4867 (2012).

    Article  CAS  Google Scholar 

  29. Langecker, M. et al. Science 338, 932–936 (2012).

    Article  CAS  Google Scholar 

  30. Burns, J. R. et al. Angew. Chem. Int. Ed. 52, 12069–12072 (2013).

    Article  CAS  Google Scholar 

  31. Gopfrich, K. et al. Nano Lett. 15, 3134–3138 (2015).

    Article  CAS  Google Scholar 

  32. Bayley, H. & Cremer, P. S. Nature 413, 226–230 (2001).

    Article  CAS  Google Scholar 

  33. Soskine, M., Biesemans, A. & Maglia, G. J. Am. Chem. Soc. 137, 5793–5797 (2015).

    Article  CAS  Google Scholar 

  34. Ke, Y., Lindsay, S., Chang, Y., Liu, Y. & Yan, H. Science 319, 180–183 (2008).

    Article  CAS  Google Scholar 

  35. Yamazaki, T. et al. Chem. Commun. 48, 11361–11363 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich F. Keyser.

Ethics declarations

Competing interests

The author's research is partly funded by Oxford Nanopore Technologies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keyser, U. Enhancing nanopore sensing with DNA nanotechnology. Nature Nanotech 11, 106–108 (2016). https://doi.org/10.1038/nnano.2016.2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing