Nanopores are on the brink of fundamentally changing DNA sequencing. At the same time, DNA origami provides unprecedented freedom in molecular design. Here, I suggest why a combination of solid-state nanopores and DNA nanotechnology will lead to exciting new experiments.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Assembly of transmembrane pores from mirror-image peptides
Nature Communications Open Access 14 September 2022
-
Towards explicit regulating-ion-transport: nanochannels with only function-elements at outer-surface
Nature Communications Open Access 10 March 2021
-
High spatial resolution nanoslit SERS for single-molecule nucleobase sensing
Nature Communications Open Access 30 April 2018
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout


References
Bayley, H. & Martin, C. R. Chem. Rev. 100, 2575–2594 (2000).
Li, J. et al. Nature 412, 166–169 (2001).
Howorka, S. & Siwy, Z. Chem. Soc. Rev. 38, 2360–2384 (2009).
Yusko, E. C. et al. Nature Nanotech. 6, 253–260 (2011).
Wei, R., Gatterdam, V., Wieneke, R., Tampe, R. & Rant, U. Nature Nanotech. 7, 257–263 (2012).
Howorka, S., Cheley, S. & Bayley, H. Nature Biotechnol. 19, 636–639 (2001).
Iqbal, S. M., Akin, D. & Bashir, R. Nature Nanotech. 2, 243–248 (2007).
Ivankin, A. et al. ACS Nano 8, 10774–10781 (2014).
McNally, B. et al. Nano Lett. 10, 2237–2244 (2010).
Jonsson, M. P. & Dekker, C. Nano Lett. 13, 1029–1033 (2013).
Thacker, V. V. et al. Nature Commun. 5, 3448 (2014).
Tsutsui, M., Taniguchi, M., Yokota, K. & Kawai, T. Nature Nanotech. 5, 286–290 (2010).
Ivanov, A. P. et al. Nano Lett. 11, 279–285 (2011).
Traversi, F. et al. Nature Nanotech. 8, 939–945 (2013).
Henrickson, S. E., Misakian, M., Robertson, B. & Kasianowicz, J. J. Phys. Rev. Lett. 85, 3057–3060 (2000).
Kasianowicz, J. J., Henrickson, S. E., Weetall, H. H. & Robertson, B. Anal. Chem. 73, 2268–2272 (2001).
Rothemund, P. W. K. Nature 440, 297–302 (2006).
Seeman, N. C. Nature 421, 427–431 (2003).
Bell, N. A. & Keyser, U. F. J. Am. Chem. Soc. 137, 2035–2041 (2015).
Steinbock, L. J., Otto, O., Chimerel, C., Gornall, J. & Keyser, U. F. Nano Lett. 10, 2493–2497 (2010).
Kowalczyk, S. W., Wells, D. B., Aksimentiev, A. & Dekker, C. Nano Lett. 12, 1038–1044 (2012).
Plesa, C., van Loo, N., Ketterer, P., Dietz, H. & Dekker, C. Nano Lett. 15, 732–737 (2015).
Plesa, C. et al. ACS Nano 8, 35–43 (2014).
Hernandez-Ainsa, S., Misiunas, K., Thacker, V. V., Hemmig, E. A. & Keyser, U. F. Nano Lett. 14, 1270–1274 (2014).
Li, C. Y. et al. ACS Nano 9, 1420–1433 (2015).
Bell, N. A. et al. Nano Lett. 12, 512–517 (2012).
Hernandez-Ainsa, S. et al. ACS Nano 7, 6024–6030 (2013).
Wei, R., Martin, T. G., Rant, U. & Dietz, H. Angew. Chem. Int. Ed. 51, 4864–4867 (2012).
Langecker, M. et al. Science 338, 932–936 (2012).
Burns, J. R. et al. Angew. Chem. Int. Ed. 52, 12069–12072 (2013).
Gopfrich, K. et al. Nano Lett. 15, 3134–3138 (2015).
Bayley, H. & Cremer, P. S. Nature 413, 226–230 (2001).
Soskine, M., Biesemans, A. & Maglia, G. J. Am. Chem. Soc. 137, 5793–5797 (2015).
Ke, Y., Lindsay, S., Chang, Y., Liu, Y. & Yan, H. Science 319, 180–183 (2008).
Yamazaki, T. et al. Chem. Commun. 48, 11361–11363 (2012).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author's research is partly funded by Oxford Nanopore Technologies.
Rights and permissions
About this article
Cite this article
Keyser, U. Enhancing nanopore sensing with DNA nanotechnology. Nature Nanotech 11, 106–108 (2016). https://doi.org/10.1038/nnano.2016.2
Published:
Issue Date:
DOI: https://doi.org/10.1038/nnano.2016.2
This article is cited by
-
DNA bases detection via MoS2 field effect transistor with a nanopore: first-principles modeling
Analog Integrated Circuits and Signal Processing (2023)
-
Assembly of transmembrane pores from mirror-image peptides
Nature Communications (2022)
-
Towards explicit regulating-ion-transport: nanochannels with only function-elements at outer-surface
Nature Communications (2021)
-
Regional and functional division of functional elements of solid-state nanochannels for enhanced sensitivity and specificity of biosensing in complex matrices
Nature Protocols (2021)
-
Molecular dynamics simulation on DNA translocating through MoS2 nanopores with various structures
Frontiers of Chemical Science and Engineering (2021)