Article | Published:

Opto-valleytronic imaging of atomically thin semiconductors

Nature Nanotechnology volume 12, pages 329334 (2017) | Download Citation

Abstract

Transition metal dichalcogenide semiconductors represent elementary components of layered heterostructures for emergent technologies beyond conventional optoelectronics. In their monolayer form they host electrons with quantized circular motion and associated valley polarization and valley coherence as key elements of opto-valleytronic functionality. Here, we introduce two-dimensional polarimetry as means of direct imaging of the valley pseudospin degree of freedom in monolayer transition metal dichalcogenides. Using MoS2 as a representative material with valley-selective optical transitions, we establish quantitative image analysis for polarimetric maps of extended crystals, and identify valley polarization and valley coherence as sensitive probes of crystalline disorder. Moreover, we find site-dependent thermal and non-thermal regimes of valley-polarized excitons in perpendicular magnetic fields. Finally, we demonstrate the potential of wide-field polarimetry for rapid inspection of opto-valleytronic devices based on atomically thin semiconductors and heterostructures.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & AlAs two-dimensional electrons in an antidot lattice: electron pinball with elliptical Fermi contours. Phys. Rev. B 75, 081304 (2007).

  2. 2.

    , , , & Valley-based noise-resistant quantum computation using Si quantum dots. Phys. Rev. Lett. 108, 126804 (2012).

  3. 3.

    , & Valley filter and valley valve in graphene. Nat. Phys. 3, 172–175 (2007).

  4. 4.

    , , , & Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

  5. 5.

    , , & Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

  6. 6.

    et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

  7. 7.

    , , , & Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

  8. 8.

    et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014).

  9. 9.

    et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 3, 887 (2012).

  10. 10.

    , , & Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotech. 7, 494–498 (2012).

  11. 11.

    , , , & Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotech. 7, 490–493 (2012).

  12. 12.

    , , , & Electrically switchable chiral light-emitting transistor. Science 344, 725–728 (2014).

  13. 13.

    , , & The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

  14. 14.

    et al. Robust optical emission polarization in MoS2 monolayers through selective valley excitation. Phys. Rev. B 86, 081301 (2012).

  15. 15.

    et al. Carrier and polarization dynamics in monolayer MoS2. Phys. Rev. Lett. 112, 047401 (2014).

  16. 16.

    et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotech. 8, 634–638 (2013).

  17. 17.

    et al. Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2. Phys. Rev. B 90, 075413 (2014).

  18. 18.

    et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nat. Phys. 9, 149–153 (2013).

  19. 19.

    et al. Spin-layer locking effects in optical orientation of exciton spin in bilayer WSe2. Nat. Phys. 10, 130–134 (2014).

  20. 20.

    , , , & Anomalously robust valley polarization and valley coherence in bilayer WS2. Proc. Natl Acad. Sci. USA 111, 11606–11611 (2014).

  21. 21.

    & (eds.) Optical Orientation (Elsevier Science, 1984).

  22. 22.

    , & Exciton spin dynamics in quantum wells. Phys. Rev. B 47, 15776–15788 (1993).

  23. 23.

    et al. Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides. Phys. Rev. B 89, 201302 (2014).

  24. 24.

    & Valley depolarization due to intervalley and intravalley electron-hole exchange interactions in monolayer MoS2. Phys. Rev. B 89, 205303 (2014).

  25. 25.

    et al. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Sci. Rep. 3, 2657 (2013).

  26. 26.

    et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554–561 (2013).

  27. 27.

    et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12, 754–759 (2013).

  28. 28.

    et al. Optically active quantum dots in monolayer WSe2. Nat. Nanotech. 10, 491–496 (2015).

  29. 29.

    et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotech. 10, 497–502 (2015).

  30. 30.

    et al. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotech. 10, 503–506 (2015).

  31. 31.

    , , , & Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotech. 10, 507–511 (2015).

  32. 32.

    et al. Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances. Phys. Rev. Lett. 114, 097403 (2015).

  33. 33.

    et al. Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers. Nat. Commun. 4, 2053 (2013).

  34. 34.

    et al. Valley splitting and polarization by the Zeeman effect in monolayer MoSe2. Phys. Rev. Lett. 113, 266804 (2014).

  35. 35.

    et al. Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys. 11, 141–147 (2015).

  36. 36.

    et al. Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys. 11, 148–152 (2015).

  37. 37.

    et al. Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys. Rev. Lett. 114, 037401 (2015).

  38. 38.

    et al. Magneto-optics in transition metal diselenide monolayers. 2D Mater. 2, 034002 (2015).

  39. 39.

    , , , & Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla. Nat. Commun. 7, 10643 (2016).

  40. 40.

    et al. Well separated trion and neutral excitons on superacid treated MoS2 monolayers. Appl. Phys. Lett. 108, 251106 (2016).

  41. 41.

    , , & Topological polaritons. Phys. Rev. X 5, 031001 (2015).

Download references

Acknowledgements

We thank P.M. Ajayan for support in the establishment of materials synthesis conditions used in this study, P. Altpeter and R. Rath for assistance in the clean room, J.P. Kotthaus, B. Urbaszek and F. Wang for useful discussions, and P. Maletinsky and K. Karrai for valuable input on the manuscript. We gratefully acknowledge funding by the European Research Council under the ERC grant agreement no. 336749, the Volkswagen Foundation, the the Deutsche Forschungsgemeinschaft (DFG) Cluster of Excellence Nanosystems Initiative Munich (NIM), and financial support from the Center for NanoScience (CeNS) and LMUinnovativ.

Author information

Affiliations

  1. Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, D-80539 München, Germany

    • Andre Neumann
    • , Jessica Lindlau
    • , Léo Colombier
    • , Manuel Nutz
    •  & Alexander Högele
  2. Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, USA

    • Sina Najmaei
    •  & Jun Lou
  3. MPA-11 Materials Synthesis and Integrated Devices, Materials Physics and Applications Division, Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87545, USA

    • Aditya D. Mohite
    •  & Hisato Yamaguchi

Authors

  1. Search for Andre Neumann in:

  2. Search for Jessica Lindlau in:

  3. Search for Léo Colombier in:

  4. Search for Manuel Nutz in:

  5. Search for Sina Najmaei in:

  6. Search for Jun Lou in:

  7. Search for Aditya D. Mohite in:

  8. Search for Hisato Yamaguchi in:

  9. Search for Alexander Högele in:

Contributions

A.N. and A.H. conceived the experiments. A.N. built the experimental set-up. H.Y. organized the material aspect and prepared MoS2 flakes on SiO2/Si substrates with support from A.D.M. S.N. and J.Lou provided inputs on growth parameters of MoS2 flakes at the initial stage of the project. A.N., M.N. and H.Y. performed basic characterization of the sample. A.N., J.Lin. and L.C. performed the measurements. A.N., J.Lin., L.C. and A.H. analysed the data. A.N. and A.H. prepared the figures and wrote the manuscript. All authors commented on the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Hisato Yamaguchi or Alexander Högele.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

Videos

  1. 1.

    Supplementary Movie

    Supplementary Movie

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nnano.2016.282

Further reading