Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy

An Author Correction to this article was published on 29 March 2019

Abstract

A material that rapidly absorbs molecular oxygen (known as an oxygen scavenger or deoxygenation agent (DOA)) has various industrial applications, such as in food preservation, anticorrosion of metal and coal deoxidation. Given that oxygen is vital to cancer growth, to starve tumours through the consumption of intratumoral oxygen is a potentially useful strategy in fighting cancer. Here we show that an injectable polymer-modified magnesium silicide (Mg2Si) nanoparticle can act as a DOA by scavenging oxygen in tumours and form by-products that block tumour capillaries from being reoxygenated. The nanoparticles are prepared by a self-propagating high-temperature synthesis strategy. In the acidic tumour microenvironment, the Mg2Si releases silane, which efficiently reacts with both tissue-dissolved and haemoglobin-bound oxygen to form silicon oxide (SiO2) aggregates. This in situ formation of SiO2 blocks the tumour blood capillaries and prevents tumours from receiving new supplies of oxygen and nutrients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of MS NPs serving as an intratumoral DOA for specific cancer-starving therapy.
Figure 2: Synthesis of MS NPs and their morphological and microstructural characterizations.
Figure 3: pH-sensitive deoxygenation effect of the as-synthesized MS NPs.
Figure 4: In vitro assessments of the MS NP-mediated deoxygenation for cell starvation.
Figure 5: MS NP-mediated tumour-starving therapy in vivo.
Figure 6: Evolutions of MS NPs during the cancer-starving therapy in vivo.

Similar content being viewed by others

References

  1. Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotech. 2, 751–760 (2007).

    Article  CAS  Google Scholar 

  2. Ganta, S., Devalapally, H., Shahiwala, A. & Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release 126, 187–204 (2008).

    Article  CAS  Google Scholar 

  3. Petros, R. A. & DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9, 615–627 (2010).

    Article  CAS  Google Scholar 

  4. Mura, S., Nicolas, J. & Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013).

    Article  CAS  Google Scholar 

  5. Chithrani, D. B. et al. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat. Res. 173, 719–728 (2010).

    Article  CAS  Google Scholar 

  6. Zhang, C. et al. Marriage of scintillator and semiconductor for synchronous radiotherapy and deep photodynamic therapy with diminished oxygen dependence. Angew. Chem. Int. Ed. 127, 1790–1794 (2015).

    Article  Google Scholar 

  7. Xing, H. Y. et al. Computed tomography imaging-guided radiotherapy by targeting upconversion nanocubes with significant imaging and radiosensitization enhancements. Sci. Rep. 3, 1751 (2013).

    Article  CAS  Google Scholar 

  8. Cheng, L., Wang, C., Feng, L. Z., Yang, K. & Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 114, 10869–10939 (2014).

    Article  CAS  Google Scholar 

  9. Huang, X. H., Jain, P. K., El-Sayed, I. H. & El-Sayed, M. A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Laser Med. Sci. 23, 217–228 (2008).

    Article  Google Scholar 

  10. Lal, S., Clare, S. E. & Halas, N. J. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc. Chem. Res. 41, 1842–1851 (2008).

    Article  CAS  Google Scholar 

  11. Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5, 161–171 (2005).

    Article  CAS  Google Scholar 

  12. Idris, N. M. et al. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 18, 1580–1585 (2012).

    Article  CAS  Google Scholar 

  13. Ge, J. C. et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 5, 4596 (2014).

    Article  CAS  Google Scholar 

  14. Folkman, J., Merler, E., Abernathy, C. & Williams, G. Isolation of a tumor factor responsible for angiogenesis. J. Exp. Med. 133, 275–288 (1971).

    Article  CAS  Google Scholar 

  15. Jain, R. K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7, 987–989 (2001).

    Article  CAS  Google Scholar 

  16. Marx, J. A boost for tumor starvation. Science 301, 452–454 (2003).

    Article  CAS  Google Scholar 

  17. Kerbel, R. S. & Kamen, B. A. The anti-angiogenic basis of metronomic chemotherapy. Nat. Rev. Cancer 4, 423–436 (2004).

    Article  CAS  Google Scholar 

  18. Shimizu, S. et al. Prevention of hypoxia-induced cell death by Bcl-2 and Bcl-xL. Nature 374, 811–813 (1995).

    Article  CAS  Google Scholar 

  19. Semenza, G. L. Life with oxygen. Science 318, 62–64 (2007).

    Article  CAS  Google Scholar 

  20. Pedraza, E., Coronel, M. M., Fraker, C. A., Ricordi, C. & Stabler, C. L. Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials. Proc. Natl Acad. Sci. USA 109, 4245–4250 (2012).

    Article  CAS  Google Scholar 

  21. Lindskog, P. & Arbstedt, P. Iron powder manufacturing techniques: a brief review. Powder Metall. 29, 14–19 (1986).

    Article  CAS  Google Scholar 

  22. Smith, J. P., Ramaswamy, H. S. & Simpson, B. K. Developments in food packaging technology. Part II.: Storage aspects. Trends Food Sci. Tech. 1, 111–118 (1990).

    Article  CAS  Google Scholar 

  23. Vermeiren, L., Devlieghere, F., Van Beest, M., De Kruijf, N. & Debevere, J. Developments in the active packaging of foods. Trends Food Sci. Tech. 10, 77–86 (1999).

    Article  CAS  Google Scholar 

  24. Gerweck, L. E. & Seetharaman, K. Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res. 56, 1194–1198 (1996).

    CAS  Google Scholar 

  25. Britton, L. G. Combustion hazards of silane and its chlorides. Process Saf. Prog. 9, 16–38 (1990).

    CAS  Google Scholar 

  26. Zhang, L. M., Leng, Y. G., Jiang, H. Y., Chen, L. D. & Hirai, T. Synthesis of Mg2Si1–xGex thermoelectric compound by solid phase reaction. Mater. Sci. Eng. B 86, 195–199 (2001).

    Article  Google Scholar 

  27. Liang, J. W. et al. Nanoporous silicon prepared through air-oxidation demagnesiation of Mg2Si and properties of its lithium ion batteries. Chem. Commun. 51, 7230–7233 (2015).

    Article  CAS  Google Scholar 

  28. Rios, P. R. Overview no. 62: a theory for grain boundary pinning by particles. Acta Metall. 35, 2805–2814 (1987).

    Article  CAS  Google Scholar 

  29. Kim, J. H., Dou, S. X., Shi, D. Q., Rindfleisch, M. & Tomsic, M. Study of MgO formation and structural defects in in situ processed MgB2/Fe wires. Supercond. Sci. Tech. 20, 1026 (2007).

    Article  CAS  Google Scholar 

  30. Andrievski, R. Nanocrystalline high melting point compound-based materials. J. Mater. Sci. 29, 614–631 (1994).

    Article  CAS  Google Scholar 

  31. Nandi, K., Mukherjee, D., Biswas, A. & Acharya, H. Optimization of acid concentration, temperature and particle size of magnesium silicide, obtained from rice husk, for the production of silanes. J. Mater. Sci. Lett. 12, 1248–1250 (1993).

    Article  CAS  Google Scholar 

  32. Fukutani, S., Uodome, Y., Kunioshi, N. & Jinno, H. Combustion reactions in silane-air flames I. Flat premixed flames. Bull. Chem. Soc. Jpn 64, 2328–2334 (1991).

    Article  CAS  Google Scholar 

  33. Miller, T., Wooldridge, M. & Bozzelli, J. Computational modeling of the SiH3 + O2 reaction and silane combustion. Combust. Flame 137, 73–92 (2004).

    Article  CAS  Google Scholar 

  34. Jain, R. K. Transport of molecules in the tumor interstitium: a review. Cancer Res. 47, 3039–3051 (1987).

    CAS  Google Scholar 

  35. Liotta, L. A., Kleinerman, J. & Saidel, G. M. Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation. Cancer Res. 34, 997–1004 (1974).

    CAS  Google Scholar 

  36. Alayash, A. I. Oxygen therapeutics: can we tame haemoglobin? Nat. Rev. Drug Discov. 3, 152–159 (2004).

    Article  CAS  Google Scholar 

  37. Hui, Y. Y. et al. Wide-field imaging and flow cytometric analysis of cancer cells in blood by fluorescent nanodiamond labeling and time gating. Sci. Rep. 4, 5574 (2014).

    Article  CAS  Google Scholar 

  38. Hussain, S. P., Hofseth, L. J. & Harris, C. C. Radical causes of cancer. Nat. Rev. Cancer 3, 276–285 (2003).

    Article  CAS  Google Scholar 

  39. López-Lázaro, M. Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy. Cancer Lett. 252, 1–8 (2007).

    Article  CAS  Google Scholar 

  40. Papkovsky, D. B. & Dmitriev, R. I. Biological detection by optical oxygen sensing. Chem. Soc. Rev. 42, 8700–8732 (2013).

    Article  CAS  Google Scholar 

  41. Solaini, G., Baracca, A., Lenaz, G. & Sgarbi, G. Hypoxia and mitochondrial oxidative metabolism. BBA Bioenergetics 1797, 1171–1177 (2010).

    Article  CAS  Google Scholar 

  42. Sermeus, A. & Michiels, C. Reciprocal influence of the p53 and the hypoxic pathways. Cell Death Dis. 2, e164 (2011).

    Article  CAS  Google Scholar 

  43. Graeber, T. G. et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379, 88–91 (1996).

    Article  CAS  Google Scholar 

  44. Heldin, C. H., Rubin, K., Pietras, K. & Östman, A. High interstitial fluid pressure—an obstacle in cancer therapy. Nat. Rev. Cancer 4, 806–813 (2004).

    Article  CAS  Google Scholar 

  45. Helmlinger, G., Yuan, F., Dellian, M. & Jain, R. K. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat. Med. 3, 177–182 (1997).

    Article  CAS  Google Scholar 

  46. Zijlstra, W. & Buursma, A. Spectrophotometry of hemoglobin: absorption spectra of rat oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin. Comp. Biochem. Physiol. B 118, 743–749 (1997).

    Article  Google Scholar 

  47. Zhang, C. et al. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction. Angew. Chem. Int. Ed. 55, 2101–2106 (2016).

    Article  CAS  Google Scholar 

  48. Pulaski, B. A. & Ostrand-Rosenberg, S. Mouse 4T1 breast tumor model. Curr. Protoc. Immunol. 20, 1–16 (2001).

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant no. 51372260 and no. 51132009) and the Shanghai Excellent Academic Leaders Program (Grant no.16XD1404000). We thank C. Zuo and C. Cheng from the Department of Nuclear Medicine, Changhai Hospital, for providing the 18F-MISO PET/CT imaging; J. Qu from GE Healthcare, Shanghai, for technical assistance with the MRI and P. Lu, Q. Li, L. Zhang and J. Feng from the Shanghai Institute of Ceramics, Chinese Academy of Sciences, for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

C.Z., W.B. and J.S. conceived the experiments and were responsible for most of the data collection. D.N. and Y.L. helped with the biomedical evaluations. H.Y. contributed to the TEM measurement and structure analysis. C.Z., W.B. and J.S. analysed the experimental data and wrote the paper. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Wenbo Bu or Jianlin Shi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4857 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Ni, D., Liu, Y. et al. Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy. Nature Nanotech 12, 378–386 (2017). https://doi.org/10.1038/nnano.2016.280

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.280

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research