Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Real-time shape approximation and fingerprinting of single proteins using a nanopore

Abstract

Established methods for characterizing proteins typically require physical or chemical modification steps or cannot be used to examine individual molecules in solution. Ionic current measurements through electrolyte-filled nanopores can characterize single native proteins in an aqueous environment, but currently offer only limited capabilities. Here we show that the zeptolitre sensing volume of bilayer-coated solid-state nanopores can be used to determine the approximate shape, volume, charge, rotational diffusion coefficient and dipole moment of individual proteins. To do this, we developed a theory for the quantitative understanding of modulations in ionic current that arise from the rotational dynamics of single proteins as they move through the electric field inside the nanopore. The approach allows us to measure the five parameters simultaneously, and we show that they can be used to identify, characterize and quantify proteins and protein complexes with potential implications for structural biology, proteomics, biomarker detection and routine protein analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rotational dynamics of individual proteins inside a nanopore reveal a spheroidal approximation of the protein's shape m.
Figure 2: Three different strategies of anchoring proteins to the lipid coating used in this work to slow down translocation such that rotational diffusion of the proteins could be resolved in time.
Figure 3: Determination of approximate protein shape and volume from histograms of maximum ΔI values from resistive pulse recordings.
Figure 4: Approximate shape, dipole moment and rotational diffusion coefficient obtained from current modulations within individual resistive pulses from the translocation of a single protein.
Figure 5: Fingerprinting of individual translocation events permits identification and characterization of G6PDH and a G6PDH–IgG complex from a binary mixture.

Similar content being viewed by others

References

  1. Picotti, P. & Aebersold, R. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat. Methods 9, 555–566 (2012).

    Article  CAS  Google Scholar 

  2. Herr, A. E. Disruptive by design: a perspective on engineering in analytical chemistry. Anal. Chem. 85, 7622–7628 (2013).

    Article  CAS  Google Scholar 

  3. Rusk, N. Disruptive nanopores. Nat. Methods 10, 35–35 (2013).

    Article  CAS  Google Scholar 

  4. Sali, A., Glaeser, R., Earnest, T. & Baumeister, W. From words to literature in structural proteomics. Nature 422, 216–225 (2003).

    Article  CAS  Google Scholar 

  5. Oncley, J. L. The investigation of proteins by dielectric measurements. Chem. Rev. 30, 433–450 (1942).

    Article  CAS  Google Scholar 

  6. Felder, C. E., Prilusky, J., Silman, I. & Sussman, J. L. A server and database for dipole moments of proteins. Nucl. Acids Res. 35, W512–W521 (2007).

    Article  Google Scholar 

  7. Singh, S., Yadav, S., Shire, S. & Kalonia, D. Dipole-dipole interaction in antibody solutions: correlation with viscosity behavior at high concentration. Pharm. Res. 31, 2549–2558 (2014).

    Article  CAS  Google Scholar 

  8. Mehl, J. W., Oncley, J. L. & Simha, R. Viscosity and the shape of protein molecules. Science 92, 132–133 (1940).

    Article  CAS  Google Scholar 

  9. Bonincontro, A. & Risuleo, G. Dielectric spectroscopy as a probe for the investigation of conformational properties of proteins. Spectrochim. Acta Part A 59, 2677–2684 (2003).

    Article  Google Scholar 

  10. Howorka, S. & Siwy, Z. Nanopore analytics: sensing of single molecules. Chem. Soc. Rev. 38, 2360–2384 (2009).

    Article  CAS  Google Scholar 

  11. Wei, R., Gatterdam, V., Wieneke, R., Tampe, R. & Rant, U. Stochastic sensing of proteins with receptor-modified solid-state nanopores. Nat. Nanotech. 7, 257–263 (2012).

    Article  CAS  Google Scholar 

  12. Qin, Z. P., Zhe, J. A. & Wang, G. X . Effects of particle's off-axis position, shape, orientation and entry position on resistance changes of micro Coulter counting devices. Meas. Sci. Technol. 22, 045804 (2011).

    Article  Google Scholar 

  13. Golibersuch, D. C. Observation of aspherical particle rotation in Poiseuille flow via the resistance pulse technique. Part 1. Application to human erythrocytes. Biophys. J. 13, 265–280 (1973).

    Article  CAS  Google Scholar 

  14. Fologea, D., Ledden, B., David, S. M. & Li, J. Electrical characterization of protein molecules by a solid-state nanopore. Appl. Phys. Lett. 91, 053901 (2007).

    Article  Google Scholar 

  15. Sexton, L. T. et al. Resistive-pulse studies of proteins and protein/antibody complexes using a conical nanotube sensor. J. Am. Chem. Soc. 129, 13144–13152 (2007).

    Article  CAS  Google Scholar 

  16. Yusko, E. C. et al. Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat. Nanotech. 6, 253–260 (2011).

    Article  CAS  Google Scholar 

  17. Robertson, J. W. F. et al. Single-molecule mass spectrometry in solution using a solitary nanopore. Proc. Natl Acad. Sci. USA 104, 8207–8211 (2007).

    Article  CAS  Google Scholar 

  18. Raillon, C. et al. Nanopore detection of single molecule RNAP-DNA transcription complex. Nano Lett. 12, 1157–1164 (2012).

    Article  CAS  Google Scholar 

  19. Soni, G. V. & Dekker, C . Detection of nucleosomal substructures using solid-state nanopores. Nano Lett. 12, 3180–3186 (2012).

    Article  CAS  Google Scholar 

  20. Di Fiori, N. et al. Optoelectronic control of surface charge and translocation dynamics in solid-state nanopores. Nat. Nanotech. 8, 946–951 (2013).

    Article  CAS  Google Scholar 

  21. Yusko, E. C. et al. Single-particle characterization of Aβ oligomers in solution. ACS Nano 6, 5909–5919 (2012).

    Article  CAS  Google Scholar 

  22. German, S. R., Hurd, T. S., White, H. S. & Mega, T. L. Sizing individual Au nanoparticles in solution with sub-nanometer resolution. ACS Nano 9, 7186–7194 (2015).

    Article  CAS  Google Scholar 

  23. Nir, I., Huttner, D. & Meller, A. Direct sensing and discrimination among ubiquitin and ubiquitin chains using solid-state nanopores. Biophys. J. 108, 2340–2349 (2015).

    Article  CAS  Google Scholar 

  24. Stefureac, R. I., Kachayev, A. & Lee, J. S. Modulation of the translocation of peptides through nanopores by the application of an AC electric field. Chem. Commun. 48, 1928–1930 (2012).

    Article  CAS  Google Scholar 

  25. Li, J. et al. Ion-beam sculpting at nanometre length scales. Nature 412, 166–169 (2001).

    Article  CAS  Google Scholar 

  26. DeBlois, R. W., Uzgiris, E. E., Cluxton, D. H. & Mazzone, H. M. Comparative measurements of size and polydispersity of several insect viruses. Anal. Biochem. 90, 273–288 (1978).

    Article  CAS  Google Scholar 

  27. Smythe, W. R. Flow around a spheroid in a circular tube. Phys. Fluids 7, 633–638 (1964).

    Article  Google Scholar 

  28. Fricke, H. The electric permittivity of a dilute suspension of membrane-covered ellipsoids. J. Appl. Phys. 24, 644–646 (1953).

    Article  CAS  Google Scholar 

  29. Velick, S. & Gorin, M. The electrical conductance of suspensions of ellipsoids and its relation to the study of avian erythrocytes. J. Gen. Physiol. 23, 753–771 (1940).

    Article  CAS  Google Scholar 

  30. Plesa, C. et al. Fast translocation of proteins through solid state nanopores. Nano Lett. 13, 658–663 (2013).

    Article  CAS  Google Scholar 

  31. Hernandez-Ainsa, S . et al. Lipid-coated nanocapillaries for DNA sensing. Analyst 138, 104–106 (2013).

    Article  CAS  Google Scholar 

  32. Woodside, M. T. et al. Direct measurement of the full, sequence-dependent folding landscape of a nucleic acid. Science 314, 1001–1004 (2006).

    Article  CAS  Google Scholar 

  33. Deen, W. M. Hindered transport of large molecules in liquid-filled pores. AIChE J. 33, 1409–1425 (1987).

    Article  CAS  Google Scholar 

  34. Happel, J. & Brenner, H. Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media 1st edn (Springer, 1983).

    Google Scholar 

  35. Yuan, Y. & Axelrod, D. Subnanosecond polarized fluorescence photobleaching: rotational diffusion of acetylcholine receptors on developing muscle cells. Biophys. J. 69, 690–700 (1995).

    Article  CAS  Google Scholar 

  36. Li, W. et al. Single protein molecule detection by glass nanopores. ACS Nano 7, 4129–4134 (2013).

    Article  CAS  Google Scholar 

  37. Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770–13773 (1996).

    Article  CAS  Google Scholar 

  38. Manrao, E. A. et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotechnol. 30, 349–353 (2012).

    Article  CAS  Google Scholar 

  39. Nivala, J., Marks, D. B. & Akeson, M. Unfoldase-mediated protein translocation through an α-hemolysin nanopore. Nat. Biotechnol. 31, 247–250 (2013).

    Article  CAS  Google Scholar 

  40. Jijin, Y. et al. Rapid and precise scanning helium ion microscope milling of solid-state nanopores for biomolecule detection. Nanotechnology 22, 285310 (2011).

    Article  Google Scholar 

  41. Rosenstein, J. K., Wanunu, M., Merchant, C. A., Drndic, M. & Shepard, K. L. Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nat. Methods 9, 487–492 (2012).

    Article  CAS  Google Scholar 

  42. Lee, M.-H. et al. A low-noise solid-state nanopore platform based on a highly insulating substrate. Sci. Rep. 4, 7448 (2014).

  43. Uram, J. D., Ke, K. & Mayer, M. Noise and bandwidth of current recordings from submicrometer pores and nanopores. ACS Nano 2, 857–872 (2008).

    Article  CAS  Google Scholar 

  44. Ortega, A., Amoros, D. & Garcia de la Torre, J. Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models. Biophys. J. 101, 892–898 (2011).

    Article  CAS  Google Scholar 

  45. De Pascalis, A. R. et al. Binding of ferredoxin to ferredoxin: NADP+ oxidoreductase: the role of carboxyl groups, electrostatic surface potential, and molecular dipole moment. Protein Sci. 2, 1126–1135 (1993).

    Article  CAS  Google Scholar 

  46. Pedone, D., Firnkes, M. & Rant, U. Data analysis of translocation events in nanopore experiments. Anal. Chem. 81, 9689–9694 (2009).

    Article  CAS  Google Scholar 

  47. Talaga, D. S. & Li, J. L. Single-molecule protein unfolding in solid state nanopores. J. Am. Chem. Soc. 131, 9287–9297 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. L. Asbury for several helpful discussions and review of the manuscript. This work was supported by a Miller Faculty Scholar Award (M.M.), the Air Force Office of Scientific Research (M.M. and D.S., grant number FA9550-12-1-0435), Oxford Nanopore Technologies (M.M., grant number 350509-N016133), the National Institutes of Health (M.M., grant number 1R01GM081705), the National Human Genome Research Institute (J.L., grant numbers HG003290 and HG004776), J. Golovchenko's Harvard nanopore group for FIB pore preparation (J.L.), a Rackham Pre-Doctoral Fellowship from the University of Michigan (E.C.Y.), a Graduate Research Fellowship from the National Science Foundation (J.H.) and the Microfluidics in Biomedical Sciences Training Program from the NIH and BIBIB (B.R.B.).

Author information

Authors and Affiliations

Authors

Contributions

E.C.Y., B.R.B. and M.M. conceived and designed experiments, analysed data, and co-wrote the manuscript. E.C.Y., B.R.B., J.H. and O.M.E. performed nanopore experiments. R.C.R., N.C.W., S.N., A.R.H. and J.L. fabricated nanopores. M.P, D.S.K. and B.R.B. measured the dipole moments of proteins with impedance spectroscopy and provided constructive feedback on the manuscript. D.S. performed computational analyses of several protein crystal structures and provided guidance on statistical methods used in the manuscript.

Corresponding author

Correspondence to Michael Mayer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 7327 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yusko, E., Bruhn, B., Eggenberger, O. et al. Real-time shape approximation and fingerprinting of single proteins using a nanopore. Nature Nanotech 12, 360–367 (2017). https://doi.org/10.1038/nnano.2016.267

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.267

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing