Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells

Abstract

Fuel cells are the zero-emission automotive power source that best preserves the advantages of gasoline automobiles: low upfront cost, long driving range and fast refuelling. To make fuel-cell cars a reality, the US Department of Energy has set a fuel cell system cost target of US$30 kW−1 in the long-term, which equates to US$2,400 per vehicle, excluding several major powertrain components (in comparison, a basic, but complete, internal combustion engine system costs approximately US$3,000). To date, most research for automotive applications has focused on proton exchange membrane fuel cells (PEMFCs), because these systems have demonstrated the highest power density. Recently, however, an alternative technology, hydroxide exchange membrane fuel cells (HEMFCs), has gained significant attention, because of the possibility to use stable platinum-group-metal-free catalysts, with inherent, long-term cost advantages. In this Perspective, we discuss the cost profile of PEMFCs and the advantages offered by HEMFCs. In particular, we discuss catalyst development needs for HEMFCs and set catalyst activity targets to achieve performance parity with state-of-the-art automotive PEMFCs. Meeting these targets requires careful optimization of nanostructures to pack high surface areas into a small volume, while maintaining high area-specific activity and favourable pore-transport properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: US DOE-sponsored cost estimates and targets for automotive PEMFC systems at 500,000 units yr−1 manufacturing volume.
Figure 2: Illustration of the overpotential budget required for a performance-parity HEMFC.
Figure 3: Comparison of literature HEMFC catalyst activity reports with proposed targets.

Similar content being viewed by others

References

  1. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan Section 3.4 (US DOE, 2016).

  2. Greene, D. L. & Duleep, G. Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure (Office of Scientific and Technical Information, 2013).

    Book  Google Scholar 

  3. Davis, P. Fuel Cell System Cost — 2002 vs 2005 DOE Hydrogen and Fuel Cells Program Record #5005 (US DOE, 2005).

    Google Scholar 

  4. James, B. D. Fuel Cell Vehicle and Bus Cost Analysis (2016); http://go.nature.com/2f6K2Qc

    Google Scholar 

  5. James, B. D., Moton J. M. & Colella, W. G Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2014 Update (US DOE, 2014).

    Google Scholar 

  6. Varcoe, J. R. et al. Anion-exchange membranes in electrochemical energy systems. Energy Environ. Sci. 7, 3135–3191 (2014).

    Article  CAS  Google Scholar 

  7. Wang, Z., Parrondo, J. & Ramani, V. Alkaline stability of poly(phenylene oxide) based anion exchange membranes containing imidazolium cations. J. Electrochem. Soc. 163, F824–F831 (2016).

    Article  CAS  Google Scholar 

  8. Zhang, B. Exploring Alkaline Stable Organic Cations for Polymer Hydroxide Exchange Membranes PhD thesis, Univ. Delaware (2015).

    Google Scholar 

  9. Xu, S., Jiang, R., Jiang, S. & Gao, Y. Communication—anion-conductive perfluoroheteroaromatic composite membranes: high chemical stability under strong alkaline conditions. J. Electrochem. Soc. 163, F688–F690 (2016).

    Article  CAS  Google Scholar 

  10. Coms, F. D. The chemistry of fuel cell membrane chemical degradation. ECS Trans. 16, 235–255 (2008).

    Article  CAS  Google Scholar 

  11. Stefánsson, A., Bénézeth, P. & Schott, J. Carbonic acid ionization and the stability of sodium bicarbonate and carbonate ion pairs to 200 °C — a potentiometric and spectrophotometric study. Geochim. Cosmochim. Acta 120, 600–611 (2013).

    Article  Google Scholar 

  12. Kohl, P. A., Unlu, M. & Zhou, J. Anion exchange membrane fuel cells: experimental comparison of hydroxide and carbonate conductive ions. Electrochem. Solid-State Lett. 12, B27–B30 (2009).

    Article  Google Scholar 

  13. Lu, S. F., Pan, J., Huang, A. B., Zhuang, L. & Lu, J. T. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Proc. Natl Acad. Sci. USA 105, 20611–20614 (2008).

    Article  CAS  Google Scholar 

  14. Gu, S. et al. An efficient Ag-ionomer interface for hydroxide exchange membrane fuel cells. Chem. Commun. 49, 131–133 (2013).

    Article  CAS  Google Scholar 

  15. Miller, H. A. et al. Pd/C-CeO2 anode catalyst for high-performance platinum-free anion exchange membrane fuel cells. Angew. Chem. Int. Ed. 128, 6108–6111 (2016).

    Article  Google Scholar 

  16. Shinozaki, K., Zack, J. W., Richards, R. M., Pivovar, B. S. & Kocha, S. S. Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique: I. Impact of impurities, measurement protocols and applied corrections. J. Electrochem. Soc. 162, F1144–F1158 (2015).

    Article  CAS  Google Scholar 

  17. Shinozaki, K., Zack, J. W., Pylypenko, S., Pivovar, B. S. & Kocha, S. S. Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique: II. Influence of ink formulation, catalyst layer uniformity and thickness. J. Electrochem. Soc. 162, F1384–F1396 (2015).

    Article  CAS  Google Scholar 

  18. Kongkanand, A. & Mathias, M. F. The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J. Phys. Chem. Lett. 7, 1127–1137 (2016).

    Article  CAS  Google Scholar 

  19. Nikolić, D. D. DAE Tools: equation-based object-oriented modelling, simulation and optimisation software. PeerJ Comput. Sci. 2, e54 (2016).

    Article  Google Scholar 

  20. Zhuang, Z. et al. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte. Nat. Commun. 7, 10141 (2016).

    Article  CAS  Google Scholar 

  21. Durst, J., Simon, C., Hasche, F. & Gasteiger, H. A. Hydrogen oxidation and evolution reaction kinetics on carbon supported Pt, Ir, Rh, and Pd electrocatalysts in acidic media. J. Electrochem. Soc. 162, F190–F203 (2014).

    Article  Google Scholar 

  22. Chung, H. T., Won, J. H. & Zelenay, P. Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat. Commun. 4, 1922 (2013).

    Article  Google Scholar 

  23. Neyerlin, K. C., Gu, W. B., Jorne, J. & Gasteiger, H. A. Determination of catalyst unique parameters for the oxygen reduction reaction in a PEMFC. J. Electrochem. Soc. 153, A1955–A1963 (2006).

    Article  CAS  Google Scholar 

  24. Liu, Y. X. et al. Proton conduction in PEM fuel cell cathodes: effects of electrode thickness and ionomer equivalent weight. J. Electrochem. Soc. 157, B1154–B1162 (2010).

    Article  CAS  Google Scholar 

  25. Yu, Z. & Carter, R. N. Measurement of effective oxygen diffusivity in electrodes for proton exchange membrane fuel cells. J. Power Sources 195, 1079–1084 (2010).

    Article  CAS  Google Scholar 

  26. Nonoyama, N., Okazaki, S., Weber, A. Z., Ikogi, Y. & Yoshida, T. Analysis of oxygen-transport diffusion resistance in proton-exchange-membrane fuel cells. J. Electrochem. Soc. 158, B416–B423 (2011).

    Article  CAS  Google Scholar 

  27. Sheng, W. et al. Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes. Energy Environ. Sci. 7, 1719–1724 (2014).

    Article  CAS  Google Scholar 

  28. Fuel Cell Technical Team Roadmap (US DRIVE Partnership, 2013); http://dx.doi.org/10.2172/1220127.

  29. Sahraie, N. R. et al. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts. Nat. Commun. 6, 8618 (2015).

    Article  CAS  Google Scholar 

  30. Holby, E. F. & Zelenay, P. Linking structure to function: the search for active sites in non-platinum group metal oxygen reduction reaction catalysts. Nano Energy (in the press); http://dx.doi.org/10.1016/j.nanoen.2016.05.025.

  31. Garsany, Y., Ge, J., St-Pierre, J., Rocheleau, R. & Swider-Lyons, K. E. Analytical procedure for accurate comparison of rotating disk electrode results for the oxygen reduction activity of Pt/C. J. Electrochem. Soc. 161, F628–F640 (2014).

    Article  CAS  Google Scholar 

  32. Suntivich, J., Gasteiger, H. A., Yabuuchi, N. & Shao-Horn, Y. Electrocatalytic measurement methodology of oxide catalysts using a thin-film rotating disk electrode. J. Electrochem. Soc. 157, B1263–B1268 (2010).

    Article  CAS  Google Scholar 

  33. Serov, A., Artyushkova, K., Andersen, N. I., Stariha, S. & Atanassov, P. Original mechanochemical synthesis of non-platinum group metals oxygen reduction reaction catalysts assisted by sacrificial support method. Electrochim. Acta 179, 154–160 (2015).

    Article  CAS  Google Scholar 

  34. Zelenay, P. Non-Precious Metal Fuel Cell Cathodes: Catalyst Development and Electrode Structure Design (2013); http://go.nature.com/2eMPMTN

    Google Scholar 

  35. Durst, J. et al. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 7, 2255–2260 (2014).

    Article  CAS  Google Scholar 

  36. Woodroof, M. D., Wittkopf, J. A., Gu, S. & Yan, Y. S. Exchange current density of the hydrogen oxidation reaction on Pt/C in polymer solid base electrolyte. Electrochem. Commun. 61, 57–60 (2015).

    Article  CAS  Google Scholar 

  37. Mahoney, E. G. The Development of Supported Electrocatalysts for the Oxidation of Fuels in Hydroxide Exchange Membrane Fuel Cells PhD thesis, Univ. Delaware (2015).

    Google Scholar 

  38. Kaspar, R. B., Wittkopf, J. A., Woodroof, M. D., Armstrong, M. J. & Yan, Y. Reverse-current decay in hydroxide exchange membrane fuel cells. J. Electrochem. Soc. 163, F377–F383 (2016).

    Article  CAS  Google Scholar 

  39. Kiros, Y., Majari, M. & Nissinen, T. A. Effect and characterization of dopants to Raney nickel for hydrogen oxidation. J. Alloys Compd 360, 279–285 (2003).

    Article  CAS  Google Scholar 

  40. Wang, Y. et al. Pt–Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect? Energy Environ. Sci. 8, 177–181 (2015).

    Article  CAS  Google Scholar 

  41. Park, S.-A., Lim, H. & Kim, Y.-T. Enhanced oxygen reduction reaction activity due to electronic effects between Ag and Mn3O4 in alkaline media. ACS Catal. 5, 3995–4002 (2015).

    Article  CAS  Google Scholar 

  42. Alia, S. M., Duong, K., Liu, T., Jensen, K. & Yan, Y. Supportless silver nanowires as oxygen reduction reaction catalysts for hydroxide-exchange membrane fuel cells. ChemSusChem 5, 1619–1624 (2012).

    Article  CAS  Google Scholar 

  43. Alia, S. M., Yan, Y. & Pivovar, B. Galvanic displacement as a route to highly active and durable, extended surface electrocatalysts. Catal. Sci. Technol. 4, 3589–3600 (2014).

    Article  CAS  Google Scholar 

  44. Alia, S. M. et al. Porous platinum nanotubes for oxygen reduction and methanol oxidation reactions. Adv. Funct. Mater. 20, 3742–3746 (2010).

    Article  CAS  Google Scholar 

  45. Carlson, E. J., Kopf, P., Sinha, J., Sriramulu, S. & Yang, Y. Cost Analysis of PEM Fuel Cell Systems for Transportation (NREL, 2005).

    Google Scholar 

  46. Varcoe, J. R. et al. Anion-exchange membranes in electrochemical energy systems. Energy Environ. Sci. 7, 3135–3191 (2014).

    Article  CAS  Google Scholar 

  47. Sheng, W. C., Gasteiger, H. A. & Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J. Electrochem. Soc. 157, B1529–B1536 (2010).

    Article  CAS  Google Scholar 

  48. Wiberg, G. K. H., Mayrhofer, K. J. J. & Arenz, M. Investigation of the oxygen reduction activity on silver — a rotating disc electrode study. Fuel Cells 10, 575–581 (2010).

    Article  CAS  Google Scholar 

  49. Acta 4020 Cathode Catalyst Datasheet (Acta S.p.A, 2016).

  50. Elbert, K. et al. Elucidating hydrogen oxidation/evolution kinetics in base and acid by enhanced activities at the optimized Pt shell thickness on the Ru core. ACS Catal. 5, 6764–6772 (2015).

    Article  CAS  Google Scholar 

  51. Zheng, J., Sheng, W., Zhuang, Z., Xu, B. & Yan, Y. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci. Adv. 2, 1–8 (2016).

    Google Scholar 

  52. Zheng, J., Zhuang, Z., Xu, B. & Yan, Y. Correlating hydrogen oxidation/evolution reaction activity with the minority weak hydrogen-binding sites on Ir/C catalysts. ACS Catal. 5, 4449–4455 (2015).

    Article  CAS  Google Scholar 

  53. Zheng, J., Zhou, S., Gu, S., Xu, B. & Yan, Y. Size-dependent hydrogen oxidation and evolution activities on supported palladium nanoparticles in acid and base. J. Electrochem. Soc. 163, F499–F506 (2016).

    Article  CAS  Google Scholar 

  54. Owejan, J. P., Owejan, J. E. & Gu, W. Impact of platinum loading and catalyst layer structure on PEMFC performance. J. Electrochem. Soc. 160, F824–F833 (2013).

    Article  CAS  Google Scholar 

  55. Li, W., Waje, M., Chen, Z., Larsen, P. & Yan, Y. Platinum nanopaticles supported on stacked-cup carbon nanofibers as electrocatalysts for proton exchange membrane fuel cell. Carbon N. Y. 48, 995–1003 (2010).

    Article  CAS  Google Scholar 

  56. Leonard, N. D. et al. Modeling of low-temperature fuel cell electrodes using non-precious metal catalysts. J. Electrochem. Soc. 162, 1253–1261 (2015).

    Article  Google Scholar 

  57. Serov, A., Robson, M. H., Artyushkova, K. & Atanassov, P. Templated non-PGM cathode catalysts derived from iron and poly(ethyleneimine) precursors. Appl. Catal. B Environ. 127, 300–306 (2012).

    Article  CAS  Google Scholar 

  58. Hao, G.-P. et al. Hydrophilic non-precious metal nitrogen-doped carbon electrocatalysts for enhanced efficiency in oxygen reduction reaction. Chem. Commun. 51, 17285–17288 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported in part by the US Department of Energy ARPA-E Program (DE-AR0000009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yushan Yan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Setzler, B., Zhuang, Z., Wittkopf, J. et al. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells. Nature Nanotech 11, 1020–1025 (2016). https://doi.org/10.1038/nnano.2016.265

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.265

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing