Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanotechnology for environmentally sustainable electromobility

A Corrigendum to this article was published on 10 January 2017

This article has been updated

Abstract

Electric vehicles (EVs) powered by lithium-ion batteries (LIBs) or proton exchange membrane hydrogen fuel cells (PEMFCs) offer important potential climate change mitigation effects when combined with clean energy sources. The development of novel nanomaterials may bring about the next wave of technical improvements for LIBs and PEMFCs. If the next generation of EVs is to lead to not only reduced emissions during use but also environmentally sustainable production chains, the research on nanomaterials for LIBs and PEMFCs should be guided by a life-cycle perspective. In this Analysis, we describe an environmental life-cycle screening framework tailored to assess nanomaterials for electromobility. By applying this framework, we offer an early evaluation of the most promising nanomaterials for LIBs and PEMFCs and their potential contributions to the environmental sustainability of EV life cycles. Potential environmental trade-offs and gaps in nanomaterials research are identified to provide guidance for future nanomaterial developments for electromobility.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Early life-cycle environmental screening of lithium-ion batteries and proton exchange membrane hydrogen fuel cells for electric vehicles.
Figure 2: Anode materials for lithium-ion batteries.
Figure 3: Cathode materials for lithium-ion batteries.
Figure 4: Cathode catalyst materials for polymer electrolyte membrane fuel cells.
Figure 5: Catalyst support materials for polymer electrolyte membrane fuel cells.

Change history

  • 14 December 2016

    In the original version of this Analysis Christine Roxanne Hung should have been acknowledged as a corresponding author. This has been corrected in the online versions of the Analysis.

References

  1. 1

    Gabriel, B. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 351–412 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  2. 2

    Sims, R. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 1–115 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  3. 3

    Shepard, S. & Jerram, L. Executive Summary: Transportation Forecast: Light Duty Vehicles (Navigant Consulting, 2015).

    Google Scholar 

  4. 4

    Global EV Outlook 2016: Beyond One Million Electric Cars (International Energy Agency, 2016).

  5. 5

    European Automobile Manufacturers' Association Overview of Purchase and Tax Incentives for Electric Vehicles in the EU 1–7 (European Automobile Manufacturers' Association, 2016).

  6. 6

    Crabtree, G., Kócs, E. & Trahey, L. The energy-storage frontier: lithium-ion batteries and beyond. MRS Bull. 40, 1067–1078 (2015).

    CAS  Article  Google Scholar 

  7. 7

    Samaras, C. & Meisterling, K. Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy. Environ. Sci. Technol. 42, 3170–3176 (2008).

    CAS  Article  Google Scholar 

  8. 8

    Szczechowicz, E., Dederichs, T. & Schnettler, A. Regional assessment of local emissions of electric vehicles using traffic simulations for a use case in Germany. Int. J. Life Cycle Assess. 17, 1131–1141 (2012).

    CAS  Article  Google Scholar 

  9. 9

    Helmers, E. & Marx, P. Electric cars: technical characteristics and environmental impacts. Environ. Sci. Eur. 24, 1–15 (2012).

  10. 10

    Simons, A. & Bauer, C. A life-cycle perspective on automotive fuel cells. Appl. Energy 157, 884–896 (2015).

    CAS  Article  Google Scholar 

  11. 11

    Hellweg, S. & Milà i Canals, L. Emerging approaches, challenges and opportunities in life cycle assessment. Science 344, 1109–1113 (2014).

    CAS  Article  Google Scholar 

  12. 12

    Kushnir, D. & Sandén, B. a. Energy requirements of carbon nanoparticle production. J. Ind. Ecol. 12, 360–375 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Kushnir, D. & Sandén, B. A. Multi-level energy analysis of emerging technologies: a case study in new materials for lithium ion batteries. J. Clean. Prod. 19, 1405–1416 (2011).

    CAS  Article  Google Scholar 

  14. 14

    Bartolozzi, I., Rizzi, F. & Frey, M. Comparison between hydrogen and electric vehicles by life cycle assessment: a case study in Tuscany, Italy. Appl. Energy 101, 103–111 (2013).

    Article  Google Scholar 

  15. 15

    Bauer, C., Hofer, J., Althaus, H.-J., Del Duce, A. & Simons, A. The environmental performance of current and future passenger vehicles: Life Cycle Assessment based on a novel scenario analysis framework. Appl. Energy 157, 871–883 (2015).

    Article  Google Scholar 

  16. 16

    Dunn, J. B., Gaines, L., Kelly, J. C., James, C. & Gallagher, K. G. The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction. Energy Environ. Sci. 8, 158–168 (2015).

    CAS  Article  Google Scholar 

  17. 17

    Faria, R., Moura, P., Delgado, J. & de Almeida, A. T. A sustainability assessment of electric vehicles as a personal mobility system. Energy Convers. Manag. 61, 19–30 (2012).

    Article  Google Scholar 

  18. 18

    Ellingsen, L. A.-W., Singh, B. & Strømman, A. H. The size and range effect: lifecycle greenhouse gas emissions of electric vehicles. Environ. Res. Lett. 11, 054010 (2016).

    Article  CAS  Google Scholar 

  19. 19

    Hawkins, T. R., Singh, B., Majeau-Bettez, G. & Strømman, A. H. Comparative environmental life cycle assessment of conventional and electric vehicles. J. Ind. Ecol. 17, 53–64 (2012).

    Article  CAS  Google Scholar 

  20. 20

    Miotti, M., Hofer, J. & Bauer, C. Integrated environmental and economic assessment of current and future fuel cell vehicles. Int. J. Life Cycle Assess. http://dx.doi.org/10.1007/s11367-015-0986-4 (2015).

  21. 21

    Notter, D. A., Kouravelou, K., Karachalios, T., Daletou, M. K. & Haberland, N. T. Life cycle assessment of PEM FC applications: electric mobility and μ-CHP. Energy Environ. Sci. 8, 1969–1985 (2015).

    CAS  Article  Google Scholar 

  22. 22

    Notter, D. A. et al. Contribution of Li-ion batteries to the environmental impact of electric vehicles. Environ. Sci. Technol. 44, 6550–6556 (2010).

    CAS  Article  Google Scholar 

  23. 23

    Li, B., Gao, X., Li, J. & Yuan, C. Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles. Environ. Sci. Technol. 48, 3047–3055 (2014).

    CAS  Article  Google Scholar 

  24. 24

    Majeau-Bettez, G., Hawkins, T. R. & Strømman, A. H. Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles. Environ. Sci. Technol. 45, 4548–4554 (2011).

    CAS  Article  Google Scholar 

  25. 25

    Zackrisson, M., Avellan, L. & Orlenius, J. Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles — critical issues. J. Clean. Prod. 18, 1519–1529 (2010).

    CAS  Article  Google Scholar 

  26. 26

    Singh, B., Guest, G., Bright, R. M. & Strømman, A. H. Life cycle assessment of electric and fuel cell vehicle transport based on forest biomass. J. Ind. Ecol. 18, 176–186 (2014).

    CAS  Article  Google Scholar 

  27. 27

    Othman, R., Dicks, A. L. & Zhu, Z. Non precious metal catalysts for the PEM fuel cell cathode. Int. J. Hydrogen Energy 37, 357–372 (2012).

    CAS  Article  Google Scholar 

  28. 28

    Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012).

    CAS  Article  Google Scholar 

  29. 29

    Wu, J. et al. A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J. Power Sources 184, 104–119 (2008).

    CAS  Article  Google Scholar 

  30. 30

    Shiau, C.-S. N., Samaras, C., Hauffe, R. & Michalek, J. J. Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles. Energy Policy 37, 2653–2663 (2009).

    Article  Google Scholar 

  31. 31

    Iwan, A., Malinowski, M. & Pasciak, G. Polymer fuel cell components modified by graphene: electrodes, electrolytes and bipolar plates. Renew. Sustain. Energy Rev. 49, 954–967 (2015).

    CAS  Article  Google Scholar 

  32. 32

    Aricò, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M. & van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005).

    Article  CAS  Google Scholar 

  33. 33

    Bruce, P. G., Scrosati, B. & Tarascon, J.-M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008).

    CAS  Article  Google Scholar 

  34. 34

    Goriparti, S. et al. Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421–443 (2014).

    CAS  Article  Google Scholar 

  35. 35

    Nie, Y., Li, L. & Wei, Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 44, 2168–201 (2015).

    CAS  Article  Google Scholar 

  36. 36

    Whittingham, M. S. Inorganic nanomaterials for batteries. Dalton Trans. 2008, 5424–5431 (2008).

    Article  CAS  Google Scholar 

  37. 37

    Whittingham, M. S. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 114, 11414–11443 (2014).

    CAS  Article  Google Scholar 

  38. 38

    Obrovac, M. N. & Chevrier, V. L. Alloy negative electrodes for Li-ion batteries. Chem. Rev. 114, 11444–11502 (2014).

    CAS  Article  Google Scholar 

  39. 39

    Liu, C., Li, F., Ma, L.-P. & Cheng, H.-M. Advanced materials for energy storage. Adv. Mater. 22, E28–E62 (2010).

    CAS  Article  Google Scholar 

  40. 40

    Gallagher, K. G. et al. Quantifying the promise of lithium–air batteries for electric vehicles. Energy Environ. Sci. 7, 1555–1563 (2014).

    CAS  Article  Google Scholar 

  41. 41

    Graedel, T. E., Allenby, B. R. & Cοmrie, P. R. Matrix approaches to abridged life cycle assessment. Environ. Sci. Technol. 29, 134A–139A (1995).

    CAS  Article  Google Scholar 

  42. 42

    Graedel, T. E. Streamlined Life-Cycle Assessment (Prentice Hall, 1998).

    Google Scholar 

  43. 43

    Todd, J. A. et al. Streamlined Life-Cycle Assessment: A Final Report from the SETAC North America Streamlined LCA Workgroup (Society of Environmental Toxicology and Chemistry, 1999).

    Google Scholar 

  44. 44

    Anastas, P. T. & Warner, J. C. Green Chemistry: Theory and Practice (Oxford Univ. Press, 1998).

    Google Scholar 

  45. 45

    Anastas, P. T. & Eghbali, N. Green chemistry: principles and practice. Chem. Soc. Rev. 39, 301–312 (2010).

    CAS  Article  Google Scholar 

  46. 46

    Ellingsen, L. A.-W. et al. Life cycle assessment of a lithium-ion battery vehicle pack. J. Ind. Ecol. 18, 113–124 (2014).

    CAS  Article  Google Scholar 

  47. 47

    Nitta, N., Wu, F., Lee, J. T. & Yushin, G. Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015).

    CAS  Article  Google Scholar 

  48. 48

    Whittingham, M. S. History, evolution, and future status of energy storage. Proc. IEEE 100, 1518–1534 (2012).

    CAS  Article  Google Scholar 

  49. 49

    Yoshino, A. in Lithium-Ion Batteries: Advances and Applications (ed. Pistoia, G.) 1–20 (Elsevier, 2014).

    Book  Google Scholar 

  50. 50

    ReCiPe Mid/Endpoint Method, version 1.11 (ReCiPe, 2015).

  51. 51

    Ecoinvent Data and Reports 3.2 (Ecoinvent Centre, 2015).

  52. 52

    Hudak, N. S. in Lithium-Ion Batteries: Advances and Applications (ed. Pistoia, G.) 57–82 (Elsevier, 2014).

    Book  Google Scholar 

  53. 53

    Ohta, N., Nagaoka, K., Hoshi, K., Bitoh, S. & Inagaki, M. Carbon-coated graphite for anode of lithium ion rechargeable batteries: graphite substrates for carbon coating. J. Power Sources 194, 985–990 (2009).

    CAS  Article  Google Scholar 

  54. 54

    Latorre-Sanchez, M., Primo, A. & Garcia, H. Green synthesis of Fe3O4 nanoparticles embedded in a porous carbon matrix and its use as anode material in Li-ion batteries. J. Mater. Chem. 22, 21373–21375 (2012).

  55. 55

    Lahiri, I. & Choi, W. Carbon nanostructures in lithium ion batteries: past, present, and future. Crit. Rev. Solid State Mater. Sci. 38, 128–166 (2013).

    CAS  Article  Google Scholar 

  56. 56

    Safety Data Sheet – Carbon Nanostructures (US Research Nanomaterials, 2015).

  57. 57

    Material Safety Data Sheets (ESPI Metals, accessed 22 April 2016); www.espimetals.com/index.php/msds

  58. 58

    Kim, H. C. & Fthenakis, V. Life cycle energy and climate change implications of nanotechnologies. J. Ind. Ecol. 17, 528–541 (2013).

    CAS  Article  Google Scholar 

  59. 59

    Gutowski, T. G. et al. Thermodynamic analysis of resources used in manufacturing processes. Environ. Sci. Technol. 43, 1584–1590 (2009).

    CAS  Article  Google Scholar 

  60. 60

    Şengül, H., Theis, T. L. & Ghosh, S. Toward sustainable nanoproducts. J. Ind. Ecol. 12, 329–359 (2008).

    Article  CAS  Google Scholar 

  61. 61

    De Volder, M. F. L., Tawfick, S. H., Baughman, R. H. & Hart, A. J. Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013).

    CAS  Article  Google Scholar 

  62. 62

    Charitidis, C. A., Georgiou, P., Koklioti, M. A., Trompeta, A.-F. & Markakis, V. Manufacturing nanomaterials: from research to industry. Manuf. Rev. 1, 11 (2014).

    Google Scholar 

  63. 63

    Sharifi, S. et al. Toxicity of nanomaterials. Chem. Soc. Rev. 41, 2323–2343 (2012).

    CAS  Article  Google Scholar 

  64. 64

    Bystrzejewska-Piotrowska, G., Golimowski, J. & Urban, P. L. Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag. 29, 2587–2595 (2009).

    CAS  Article  Google Scholar 

  65. 65

    Köhler, A. R., Som, C., Helland, A. & Gottschalk, F. Studying the potential release of carbon nanotubes throughout the application life cycle. J. Clean. Prod. 16, 927–937 (2008).

    Article  Google Scholar 

  66. 66

    Graedel, T. E., Harper, E. M., Nassar, N. T., Nuss, P. & Reck, B. K. Criticality of metals and metalloids. Proc. Natl Acad. Sci. USA 112, 4257–4262 (2015).

    CAS  Article  Google Scholar 

  67. 67

    Lee, W. W. & Lee, J.-M. Novel synthesis of high performance anode materials for lithium-ion batteries (LIBs). J. Mater. Chem. A 2, 1589–1626 (2014).

    CAS  Article  Google Scholar 

  68. 68

    Reddy, M. V., Subba Rao, G. V. & Chowdari, B. V. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364–5457 (2013).

    CAS  Article  Google Scholar 

  69. 69

    Ma, Y., Ding, B., Ji, G. & Lee, J. Y. Carbon-encapsulated F-doped Li4Ti5O12 as a high rate anode material for Li+ batteries. ACS Nano 7, 10870–10878 (2013).

    CAS  Article  Google Scholar 

  70. 70

    Anderman, M. The Tesla Battery Report (Total Battery Consulting, 2016).

    Google Scholar 

  71. 71

    Safety Data Sheet – Lithium Titanium Oxide 1–6 (NEI Corporation, 2014).

  72. 72

    Gan, L. et al. A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium-ion batteries. Electrochim. Acta 104, 117–123 (2013).

    CAS  Article  Google Scholar 

  73. 73

    Zamfir, M. R., Nguyen, H. T., Moyen, E., Lee, Y. H. & Pribat, D. Silicon nanowires for Li-based battery anodes: a review. J. Mater. Chem. A 1, 9566–9586 (2013).

    CAS  Article  Google Scholar 

  74. 74

    Scrosati, B. & Garche, J. Lithium batteries: status, prospects and future. J. Power Sources 195, 2419–2430 (2010).

    CAS  Article  Google Scholar 

  75. 75

    Su, X. et al. Silicon-based nanomaterials for lithium-ion batteries: a review. Adv. Energy Mater. 4, 1–23 (2014).

    Article  CAS  Google Scholar 

  76. 76

    Ge, M., Rong, J., Fang, X. & Zhou, C. Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 12, 2318–2323 (2012).

    CAS  Article  Google Scholar 

  77. 77

    Jia, H. et al. Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material. Adv. Energy Mater. 1, 1036–1039 (2011).

    CAS  Article  Google Scholar 

  78. 78

    Safety Data Sheet — Silicon Nanopowder/Nanoparticles (US Research Nanomaterials, 2016).

  79. 79

    Material Safety Data Sheet — Monodispersed silicon nanowires (Sigma Aldrich, 2010).

  80. 80

    Safety Data Sheet — Tin Oxide Nanopowder (American Elements, 2015).

  81. 81

    Material Safety Data Sheet — Germanium Nanoparticles (US Research Nanomaterials, accessed 22 April 2016).

  82. 82

    Dong, Z. et al. The anode challenge for lithium-ion batteries: a mechanochemically synthesized Sn-Fe-C composite anode surpasses graphitic carbon. Adv. Sci. 3, 1–8 (2016).

    Article  CAS  Google Scholar 

  83. 83

    Sony's new nexelion hybrid lithium ion batteries to have thirty-percent more capacity than conventional offering. Sony (15 February 2005); http://www.sony.net/SonyInfo/News/Press/200502/05-006E/

  84. 84

    Fan, Q., Chupas, P. J. & Whittingham, M. S. Characterization of amorphous and crystalline tin–cobalt anodes. Electrochem. Solid State Lett. 10, A274–A278 (2007).

    CAS  Article  Google Scholar 

  85. 85

    Safety Data Sheet — Iron(II, III) Oxide Nanopowder (American Elements, 2015).

  86. 86

    SDS | LTS (LTS Chemical, accessed 22 April 2016); https://www.ltschem.com/msds/

  87. 87

    Material Safety Data Sheet — Cobalt (II) Oxide Nanoparticles (CoO) (US Research Nanomaterials, accessed 22 April 2016).

  88. 88

    Safety Data Sheet — Chromium Oxide Nanopowder (American Elements, 2015).

  89. 89

    Safety Data Sheet — Molybdenum Oxide Nanopowder (American Elements, 2015).

  90. 90

    Wang, B., Chen, J. S., Wu, H. B., Wang, Z. & Lou, X. W. Quasiemulsion-templated formation of alpha-Fe2O3 hollow spheres with enhanced lithium storage properties. J. Am. Chem. Soc. 133, 17146–17148 (2011).

    CAS  Article  Google Scholar 

  91. 91

    Etacheri, V., Marom, R., Elazari, R., Salitra, G. & Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011).

    CAS  Article  Google Scholar 

  92. 92

    Li, Q. et al. Balancing stability and specific energy in Li-rich cathodes for lithium ion batteries: a case study of a novel Li–Mn–Ni–Co oxide. J. Mater. Chem. A 3, 10592–10602 (2015).

    CAS  Article  Google Scholar 

  93. 93

    Rosenman, A. et al. Review on Li-sulfur battery systems: an integral perspective. Adv. Energy Mater. 5, 1–21 (2015).

    Article  CAS  Google Scholar 

  94. 94

    Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

    CAS  Article  Google Scholar 

  95. 95

    Safety Data Sheet — Lithium Cobalt Oxide Nanopowder (American Elements, 2015).

  96. 96

    Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004).

    CAS  Article  Google Scholar 

  97. 97

    Hanisch, C., Diekmann, J., Stieger, A., Haselrieder, W. & Kwade, A. in Handbook of Clean Energy Systems http://dx.doi.org/10.1002/9781118991978.hces221 (2015).

    Google Scholar 

  98. 98

    Material Safety Data Sheet — Lithium Manganese Nickel Cobalt Oxide Powder (NEI Corporation, 2014).

  99. 99

    Safety Data Sheet — Lithium Nickel Cobalt Aluminum Oxide (NEI Corporation, 2014).

  100. 100

    Liu, J., Wang, R. & Xia, Y. Degradation and structural evolution of xLi2MnO3·(1−x)LiMn1/3Ni1/3Co1/3O2 during cycling. J. Electrochem. Soc. 161, A160–A167 (2013).

    Article  CAS  Google Scholar 

  101. 101

    Safety Data Sheet — LMR (Pfaltz & Bauer, 2013).

  102. 102

    Yu, H. & Zhou, H. High-energy cathode materials (Li2MnO3–LiMO2) for lithium-ion batteries. J. Phys. Chem. Lett. 4, 1268–1280 (2013).

    CAS  Article  Google Scholar 

  103. 103

    Liu, J. et al. General synthesis of xLi2MnO3·(1−x)LiMn1/3Ni1/3Co1/3O2 nanomaterials by a molten-salt method: towards a high capacity and high power cathode for rechargeable lithium batteries. J. Mater. Chem. 22, 25380–25387 (2012).

    CAS  Article  Google Scholar 

  104. 104

    Croy, J. R., Balasubramanian, M., Gallagher, K. G. & Burrell, A. K. Review of the US Department of Energy's 'deep dive' effort to understand voltage fade in Li- and Mn-rich cathodes. Acc. Chem. Res. 48, 2813–2821 (2015).

    CAS  Article  Google Scholar 

  105. 105

    Ellis, B. L., Lee, K. T. & Nazar, L. F. Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 22, 691–714 (2010).

    CAS  Article  Google Scholar 

  106. 106

    Pampal, E. S., Stojanovska, E., Simon, B. & Kilic, A. A review of nanofibrous structures in lithium ion batteries. J. Power Sources 300, 199–215 (2015).

    CAS  Article  Google Scholar 

  107. 107

    Song, M. K., Park, S., Alamgir, F. M., Cho, J. & Liu, M. Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Mater. Sci. Eng. R Rep. 72, 203–252 (2011).

    Article  CAS  Google Scholar 

  108. 108

    Satyavani, T. V. S. L., Srinivas Kumar, A. & Subba Rao, P. S. V. Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: a review. Eng. Sci. Technol. Int. J. 19, 178–188 (2015).

    Article  Google Scholar 

  109. 109

    Lin, Y.-C. et al. Thermodynamics, kinetics and structural evolution of ε-LiVOPO4 over multiple lithium intercalation. Chem. Mater. 28, 1794–1805 (2015).

    Article  CAS  Google Scholar 

  110. 110

    Safety Data Sheet — Lithium Manganese Oxide Nanoparticles (American Elements, 2015).

  111. 111

    Cheng, F. et al. Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries. Energy Environ. Sci. 4, 3668–3675 (2011).

    CAS  Article  Google Scholar 

  112. 112

    Li, W. et al. A sulfur cathode with pomegranate-like cluster structure. Adv. Energy Mater. 5, 1500211 (2015).

    Article  CAS  Google Scholar 

  113. 113

    Xu, R., Lu, J. & Amine, K. Progress in mechanistic understanding and characterization techniques of Li-S batteries. Adv. Energy Mater. 5, 1–22 (2015).

    Google Scholar 

  114. 114

    Cai, K., Song, M.-K., Cairns, E. J. & Zhang, Y. Nanostructured Li2S–C composites as cathode material for high-energy lithium/sulfur batteries. Nano Lett. 12, 6474–6479 (2012).

    CAS  Article  Google Scholar 

  115. 115

    Wu, S., Ge, R., Lu, M., Xu, R. & Zhang, Z. Graphene-based nano-materials for lithium-sulfur battery and sodium-ion battery. Nano Energy 15, 379–405 (2015).

    CAS  Article  Google Scholar 

  116. 116

    Son, Y., Lee, J. S., Son, Y., Jang, J. H. & Cho, J. Recent advances in lithium sulfide cathode materials and their use in lithium sulfur batteries. Adv. Energy Mater. 5, 1–14 (2015).

    Article  CAS  Google Scholar 

  117. 117

    Manthiram, A., Chung, S.-H. & Zu, C. Lithium–sulfur batteries: progress and prospects. Adv. Mater. 27, 1980–2006 (2015).

    CAS  Article  Google Scholar 

  118. 118

    Safety Data Sheet — Sulfur Nanopowder (American Elements, 2015).

  119. 119

    MSDS Information (American Polymer Standards Corporation, accessed 22 April 2016); www.ampolymer.com/I5-MSDS.html

  120. 120

    Sicherheitsdatenblatt — Polyaniline (Globale EHS-Manages, 2012).

  121. 121

    Nan, C. et al. Durable carbon-coated Li2(S) core–shell spheres for high performance lithium/sulfur cells. J. Am. Chem. Soc. 136, 4659–4663 (2014).

    CAS  Article  Google Scholar 

  122. 122

    Yang, Y. et al. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. J. Am. Chem. Soc. 134, 15387–15394 (2012).

    CAS  Article  Google Scholar 

  123. 123

    Georgi-Maschler, T., Friedrich, B., Weyhe, R., Heegn, H. & Rutz, M. Development of a recycling process for Li-ion batteries. J. Power Sources 207, 173–182 (2012).

    CAS  Article  Google Scholar 

  124. 124

    Reuter, M. A. et al. Metal Recycling: Opportunities, Limits, Infrastructure. A Report of the Working Group on the Global Metal Flows to the International Resource Panel (UNEP, 2013).

    Google Scholar 

  125. 125

    Gratz, E., Sa, Q., Apelian, D. & Wang, Y. A closed loop process for recycling spent lithium ion batteries. J. Power Sources 262, 255–262 (2014).

    CAS  Article  Google Scholar 

  126. 126

    Xu, J. et al. A review of processes and technologies for the recycling of lithium-ion secondary batteries. J. Power Sources 177, 512–527 (2008).

    CAS  Article  Google Scholar 

  127. 127

    Som, C. et al. The importance of life cycle concepts for the development of safe nanoproducts. Toxicology 269, 160–169 (2010).

    CAS  Article  Google Scholar 

  128. 128

    Scofield, M. E., Liu, H. & Wong, S. S. A concise guide to sustainable PEMFCs: recent advances in improving both oxygen reduction catalysts and proton exchange membranes. Chem. Soc. Rev. 44, 5836–5860 (2015).

    CAS  Article  Google Scholar 

  129. 129

    Duan, H. & Xu, C. Nanoporous PtPd alloy electrocatalysts with high activity and stability toward oxygen reduction reaction. Electrochim. Acta 152, 417–424 (2015).

    CAS  Article  Google Scholar 

  130. 130

    Chen, Z., Higgins, D., Yu, A., Zhang, L. & Zhang, J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 4, 3167–3192 (2011).

    CAS  Article  Google Scholar 

  131. 131

    Shao, M., Chang, Q., Dodelet, J.-P. & Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116, 3594–3657 (2016).

    CAS  Article  Google Scholar 

  132. 132

    Morozan, A., Jousselme, B. & Palacin, S. Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy Environ. Sci. 4, 1238–1254 (2011).

    CAS  Article  Google Scholar 

  133. 133

    Zhang, W. & Pintauro, P. N. High-performance nanofiber fuel cell electrodes. ChemSusChem 4, 1753–1757 (2011).

    CAS  Article  Google Scholar 

  134. 134

    Brodt, M. et al. Fabrication, in-situ performance, and durability of nanofiber fuel cell electrodes. J. Electrochem. Soc. 162, F84–F91 (2014).

    Article  CAS  Google Scholar 

  135. 135

    Alia, S. M. et al. Platinum-coated nickel nanowires as oxygen-reducing electrocatalysts. ACS Catal. 4, 1114–1119 (2014).

    CAS  Article  Google Scholar 

  136. 136

    Wang, C., Markovic, N. M. & Stamenkovic, V. R. Advanced platinum alloy electrocatalysts for the oxygen reduction reaction. ACS Catal. 2, 891–898 (2012).

    CAS  Article  Google Scholar 

  137. 137

    Choi, S.-I. et al. Synthesis and characterization of 9 nm Pt–Ni octahedra with a record high activity of 3.3 A/mg(Pt) for the oxygen reduction reaction. Nano Lett. 13, 3420–3425 (2013).

    CAS  Article  Google Scholar 

  138. 138

    Guo, S. et al. FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 52, 3465–3468 (2013).

    CAS  Article  Google Scholar 

  139. 139

    Tseng, C.-J., Lo, S.-T., Lo, S.-C. & Chu, P. P. Characterization of Pt–Cu binary catalysts for oxygen reduction for fuel cell applications. Mater. Chem. Phys. 100, 385–390 (2006).

    CAS  Article  Google Scholar 

  140. 140

    Liu, J. et al. Impact of Cu–Pt nanotubes with a high degree of alloying on electro-catalytic activity toward oxygen reduction reaction. Electrochim. Acta 152, 425–432 (2015).

    CAS  Article  Google Scholar 

  141. 141

    Nuss, P. & Eckelman, M. J. Life cycle assessment of metals: a scientific synthesis. PLOS One 9, 1–12 (2014).

    Google Scholar 

  142. 142

    Proietti, E. et al. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2, 416 (2011).

    Article  CAS  Google Scholar 

  143. 143

    Choi, C. H., Chung, M. W., Jun, Y. J. & Woo, S. I. Doping of chalcogens (sulfur and/or selenium) in nitrogen-doped graphene–CNT self-assembly for enhanced oxygen reduction activity in acid media. RSC Adv. 3, 12417–12422 (2013).

  144. 144

    Wei, Q. et al. Nitrogen-doped carbon nanotube and graphene materials for oxygen reduction reactions. Catalysts 5, 1574–1602 (2015).

    CAS  Article  Google Scholar 

  145. 145

    Zhan, Y. et al. Iodine/nitrogen co-doped graphene as metal free catalyst for oxygen reduction reaction. Carbon N. Y. 95, 930–939 (2015).

    CAS  Article  Google Scholar 

  146. 146

    Li, H. et al. A review of water flooding issues in the proton exchange membrane fuel cell. J. Power Sources 178, 103–117 (2008).

    CAS  Article  Google Scholar 

  147. 147

    Higgins, D. et al. Development and simulation of sulfur-doped graphene supported platinum with exemplary stability and activity towards oxygen reduction. Adv. Funct. Mater. 24, 4325–4336 (2014).

    CAS  Article  Google Scholar 

  148. 148

    Shahgaldi, S. & Hamelin, J. Improved carbon nanostructures as a novel catalyst support in the cathode side of PEMFC: a critical review. Carbon 94, 705–728 (2015).

    CAS  Article  Google Scholar 

  149. 149

    Sharma, S. & Pollet, B. G. Support materials for PEMFC and DMFC electrocatalysts — a review. J. Power Sources 208, 96–119 (2012).

    CAS  Article  Google Scholar 

  150. 150

    Higgins, D. C., Meza, D. & Chen, Z. Nitrogen-doped carbon nanotubes as platinum catalyst supports for oxygen reduction reaction in proton exchange membrane fuel cells. J. Phys. Chem. C 114, 21982–21988 (2010).

    CAS  Article  Google Scholar 

  151. 151

    Yee, R. S. L., Rozendal, R. A., Zhang, K. & Ladewig, B. P. Cost effective cation exchange membranes: a review. Chem. Eng. Res. Des. 90, 950–959 (2012).

    CAS  Article  Google Scholar 

  152. 152

    Hongsirikarn, K., Goodwin, J. G., Greenway, S. & Creager, S. Influence of ammonia on the conductivity of Nafion membranes. J. Power Sources 195, 30–38 (2010).

    CAS  Article  Google Scholar 

  153. 153

    Tripathi, B. P. & Shahi, V. K. Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog. Polym. Sci. 36, 945–979 (2011).

    CAS  Article  Google Scholar 

  154. 154

    Kraytsberg, A. & Ein-Eli, Y. Review of advanced materials for proton exchange membrane fuel cells. Energy Fuels 28, 7303–7330 (2014).

    CAS  Article  Google Scholar 

  155. 155

    Ballengee, J. B., Haugen, G. M., Hamrock, S. J. & Pintauro, P. N. Properties and fuel cell performance of a nanofiber composite membrane with 660 equivalent weight perfluorosulfonic acid. J. Electrochem. Soc. 160, F429–F435 (2013).

    CAS  Article  Google Scholar 

  156. 156

    Tanaka, M. Development of ion conductive nanofibers for polymer electrolyte fuel cells. Polym. J. 48, 51–58 (2015).

    Article  CAS  Google Scholar 

  157. 157

    Wycisk, R., Pintauro, P. N. & Park, J. W. New developments in proton conducting membranes for fuel cells. Curr. Opin. Chem. Eng. 4, 71–78 (2014).

    Article  Google Scholar 

  158. 158

    Ballengee, J. B. & Pintauro, P. N. Composite fuel cell membranes from dual-nanofiber electrospun mats. Macromolecules 44, 7307–7314 (2011).

    CAS  Article  Google Scholar 

  159. 159

    Subianto, S. Recent advances in polybenzimidazole/phosphoric acid membranes for high-temperature fuel cells. Polym. Int. 63, 1134–1144 (2014).

    CAS  Article  Google Scholar 

  160. 160

    Safety Data Sheet Product — Phosphotungstic Acid (Ted Pella, 2015).

  161. 161

    Jun, Y., Zarrin, H., Fowler, M. & Chen, Z. Functionalized titania nanotube composite membranes for high temperature proton exchange membrane fuel cells. Int. J. Hydrogen Energy 36, 6073–6081 (2011).

    CAS  Article  Google Scholar 

  162. 162

    Wang, Y., Jin, J., Yang, S., Li, G. & Qiao, J. Highly active and stable platinum catalyst supported on porous carbon nanofibers for improved performance of PEMFC. Electrochim. Acta 177, 181–189 (2015).

    CAS  Article  Google Scholar 

  163. 163

    Chalkovaa, E. et al. Composite proton conductive membranes for elevated temperature and reduced relative humidity PEMFC. ECS Trans. 25, 1141–1150 (2009).

    Article  Google Scholar 

  164. 164

    Kalappa, P. & Lee, J.-H. Proton conducting membranes based on sulfonated poly(ether ether ketone)/TiO2 nanocomposites for a direct methanol fuel cell. Polym. Int. 56, 371–375 (2007).

    CAS  Article  Google Scholar 

  165. 165

    Chandan, A. et al. High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) — a review. J. Power Sources 231, 264–278 (2013).

    CAS  Article  Google Scholar 

  166. 166

    Lu, J., Lu, S. & Jiang, S. P. Highly ordered mesoporous Nafion membranes for fuel cells. Chem. Commun. 47, 3216–3218 (2011).

    CAS  Article  Google Scholar 

  167. 167

    Zarrin, H., Higgins, D., Jun, Y., Chen, Z. & Fowler, M. Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. J. Phys. Chem. C 115, 20774–20781 (2011).

    CAS  Article  Google Scholar 

  168. 168

    Patel, A. & Dawson, R. Recovery of platinum group metal value via potassium iodide leaching. Hydrometallurgy 157, 219–225 (2015).

    CAS  Article  Google Scholar 

  169. 169

    Safety Data Sheet — Chlorine 1–6 (Airgas 2015).

  170. 170

    Safety Data Sheet — Sodium Cyanide (Columbus Chemical Industries, 2014).

  171. 171

    Safety Data Sheet — Aqua Regia (Columbus Chemical Industries, 2013).

  172. 172

    Handley, C., Brandon, N. P. & Van Der Vorst, R. Impact of the European Union vehicle waste directive on end-of-life options for polymer electrolyte fuel cells. J. Power Sources 106, 344–352 (2002).

    CAS  Article  Google Scholar 

  173. 173

    Shiroishi, H. et al. Dissolution rate of noble metals for electrochemical recycle in polymer electrolyte fuel cells. Electrochemistry 80, 898–903 (2012).

    CAS  Article  Google Scholar 

  174. 174

    Xu, F., Mu, S. & Pan, M. Recycling of membrane electrode assembly of PEMFC by acid processing. Int. J. Hydrogen Energy 35, 2976–2979 (2010).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank D. U. Lee and H. Zarrin for internal review and discussions. We also thank C. Bangs, D. Rickert, M. Quix, C. Stuyck, R. Weyhe and Q. Pan for communication on recycling of PEMFCs and LIBs. We also thank B. Reck and X. Hu for discussions. This work was financed by the Norwegian University of Science and Technology, the Research Council of Norway through the Centre for Sustainable Energy Studies (grant 209697), and the European Union's Horizon 2020 research and innovation programme (grant 646286). The authors remain solely responsible for the content of this article.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Linda Ager-Wick Ellingsen or Christine Roxanne Hung.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1611 kb)

Supplementary information

Data sources for Figures 2–5 (PDF 327 kb)

Supplementary information

Supplementary Text (XLSX 3147 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ellingsen, LW., Hung, C., Majeau-Bettez, G. et al. Nanotechnology for environmentally sustainable electromobility. Nature Nanotech 11, 1039–1051 (2016). https://doi.org/10.1038/nnano.2016.237

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research