Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Nanotechnology for environmentally sustainable electromobility

A Corrigendum to this article was published on 10 January 2017

This article has been updated

Abstract

Electric vehicles (EVs) powered by lithium-ion batteries (LIBs) or proton exchange membrane hydrogen fuel cells (PEMFCs) offer important potential climate change mitigation effects when combined with clean energy sources. The development of novel nanomaterials may bring about the next wave of technical improvements for LIBs and PEMFCs. If the next generation of EVs is to lead to not only reduced emissions during use but also environmentally sustainable production chains, the research on nanomaterials for LIBs and PEMFCs should be guided by a life-cycle perspective. In this Analysis, we describe an environmental life-cycle screening framework tailored to assess nanomaterials for electromobility. By applying this framework, we offer an early evaluation of the most promising nanomaterials for LIBs and PEMFCs and their potential contributions to the environmental sustainability of EV life cycles. Potential environmental trade-offs and gaps in nanomaterials research are identified to provide guidance for future nanomaterial developments for electromobility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Early life-cycle environmental screening of lithium-ion batteries and proton exchange membrane hydrogen fuel cells for electric vehicles.
Figure 2: Anode materials for lithium-ion batteries.
Figure 3: Cathode materials for lithium-ion batteries.
Figure 4: Cathode catalyst materials for polymer electrolyte membrane fuel cells.
Figure 5: Catalyst support materials for polymer electrolyte membrane fuel cells.

Similar content being viewed by others

Change history

  • 14 December 2016

    In the original version of this Analysis Christine Roxanne Hung should have been acknowledged as a corresponding author. This has been corrected in the online versions of the Analysis.

References

  1. Gabriel, B. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 351–412 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  2. Sims, R. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 1–115 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  3. Shepard, S. & Jerram, L. Executive Summary: Transportation Forecast: Light Duty Vehicles (Navigant Consulting, 2015).

    Google Scholar 

  4. Global EV Outlook 2016: Beyond One Million Electric Cars (International Energy Agency, 2016).

  5. European Automobile Manufacturers' Association Overview of Purchase and Tax Incentives for Electric Vehicles in the EU 1–7 (European Automobile Manufacturers' Association, 2016).

  6. Crabtree, G., Kócs, E. & Trahey, L. The energy-storage frontier: lithium-ion batteries and beyond. MRS Bull. 40, 1067–1078 (2015).

    Article  CAS  Google Scholar 

  7. Samaras, C. & Meisterling, K. Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy. Environ. Sci. Technol. 42, 3170–3176 (2008).

    Article  CAS  Google Scholar 

  8. Szczechowicz, E., Dederichs, T. & Schnettler, A. Regional assessment of local emissions of electric vehicles using traffic simulations for a use case in Germany. Int. J. Life Cycle Assess. 17, 1131–1141 (2012).

    Article  CAS  Google Scholar 

  9. Helmers, E. & Marx, P. Electric cars: technical characteristics and environmental impacts. Environ. Sci. Eur. 24, 1–15 (2012).

  10. Simons, A. & Bauer, C. A life-cycle perspective on automotive fuel cells. Appl. Energy 157, 884–896 (2015).

    Article  CAS  Google Scholar 

  11. Hellweg, S. & Milà i Canals, L. Emerging approaches, challenges and opportunities in life cycle assessment. Science 344, 1109–1113 (2014).

    Article  CAS  Google Scholar 

  12. Kushnir, D. & Sandén, B. a. Energy requirements of carbon nanoparticle production. J. Ind. Ecol. 12, 360–375 (2008).

    Article  CAS  Google Scholar 

  13. Kushnir, D. & Sandén, B. A. Multi-level energy analysis of emerging technologies: a case study in new materials for lithium ion batteries. J. Clean. Prod. 19, 1405–1416 (2011).

    Article  CAS  Google Scholar 

  14. Bartolozzi, I., Rizzi, F. & Frey, M. Comparison between hydrogen and electric vehicles by life cycle assessment: a case study in Tuscany, Italy. Appl. Energy 101, 103–111 (2013).

    Article  Google Scholar 

  15. Bauer, C., Hofer, J., Althaus, H.-J., Del Duce, A. & Simons, A. The environmental performance of current and future passenger vehicles: Life Cycle Assessment based on a novel scenario analysis framework. Appl. Energy 157, 871–883 (2015).

    Article  Google Scholar 

  16. Dunn, J. B., Gaines, L., Kelly, J. C., James, C. & Gallagher, K. G. The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction. Energy Environ. Sci. 8, 158–168 (2015).

    Article  CAS  Google Scholar 

  17. Faria, R., Moura, P., Delgado, J. & de Almeida, A. T. A sustainability assessment of electric vehicles as a personal mobility system. Energy Convers. Manag. 61, 19–30 (2012).

    Article  Google Scholar 

  18. Ellingsen, L. A.-W., Singh, B. & Strømman, A. H. The size and range effect: lifecycle greenhouse gas emissions of electric vehicles. Environ. Res. Lett. 11, 054010 (2016).

    Article  CAS  Google Scholar 

  19. Hawkins, T. R., Singh, B., Majeau-Bettez, G. & Strømman, A. H. Comparative environmental life cycle assessment of conventional and electric vehicles. J. Ind. Ecol. 17, 53–64 (2012).

    Article  CAS  Google Scholar 

  20. Miotti, M., Hofer, J. & Bauer, C. Integrated environmental and economic assessment of current and future fuel cell vehicles. Int. J. Life Cycle Assess. http://dx.doi.org/10.1007/s11367-015-0986-4 (2015).

  21. Notter, D. A., Kouravelou, K., Karachalios, T., Daletou, M. K. & Haberland, N. T. Life cycle assessment of PEM FC applications: electric mobility and μ-CHP. Energy Environ. Sci. 8, 1969–1985 (2015).

    Article  CAS  Google Scholar 

  22. Notter, D. A. et al. Contribution of Li-ion batteries to the environmental impact of electric vehicles. Environ. Sci. Technol. 44, 6550–6556 (2010).

    Article  CAS  Google Scholar 

  23. Li, B., Gao, X., Li, J. & Yuan, C. Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles. Environ. Sci. Technol. 48, 3047–3055 (2014).

    Article  CAS  Google Scholar 

  24. Majeau-Bettez, G., Hawkins, T. R. & Strømman, A. H. Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles. Environ. Sci. Technol. 45, 4548–4554 (2011).

    Article  CAS  Google Scholar 

  25. Zackrisson, M., Avellan, L. & Orlenius, J. Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles — critical issues. J. Clean. Prod. 18, 1519–1529 (2010).

    Article  CAS  Google Scholar 

  26. Singh, B., Guest, G., Bright, R. M. & Strømman, A. H. Life cycle assessment of electric and fuel cell vehicle transport based on forest biomass. J. Ind. Ecol. 18, 176–186 (2014).

    Article  CAS  Google Scholar 

  27. Othman, R., Dicks, A. L. & Zhu, Z. Non precious metal catalysts for the PEM fuel cell cathode. Int. J. Hydrogen Energy 37, 357–372 (2012).

    Article  CAS  Google Scholar 

  28. Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012).

    Article  CAS  Google Scholar 

  29. Wu, J. et al. A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J. Power Sources 184, 104–119 (2008).

    Article  CAS  Google Scholar 

  30. Shiau, C.-S. N., Samaras, C., Hauffe, R. & Michalek, J. J. Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles. Energy Policy 37, 2653–2663 (2009).

    Article  Google Scholar 

  31. Iwan, A., Malinowski, M. & Pasciak, G. Polymer fuel cell components modified by graphene: electrodes, electrolytes and bipolar plates. Renew. Sustain. Energy Rev. 49, 954–967 (2015).

    Article  CAS  Google Scholar 

  32. Aricò, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M. & van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005).

    Article  CAS  Google Scholar 

  33. Bruce, P. G., Scrosati, B. & Tarascon, J.-M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008).

    Article  CAS  Google Scholar 

  34. Goriparti, S. et al. Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421–443 (2014).

    Article  CAS  Google Scholar 

  35. Nie, Y., Li, L. & Wei, Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 44, 2168–201 (2015).

    Article  CAS  Google Scholar 

  36. Whittingham, M. S. Inorganic nanomaterials for batteries. Dalton Trans. 2008, 5424–5431 (2008).

    Article  CAS  Google Scholar 

  37. Whittingham, M. S. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 114, 11414–11443 (2014).

    Article  CAS  Google Scholar 

  38. Obrovac, M. N. & Chevrier, V. L. Alloy negative electrodes for Li-ion batteries. Chem. Rev. 114, 11444–11502 (2014).

    Article  CAS  Google Scholar 

  39. Liu, C., Li, F., Ma, L.-P. & Cheng, H.-M. Advanced materials for energy storage. Adv. Mater. 22, E28–E62 (2010).

    Article  CAS  Google Scholar 

  40. Gallagher, K. G. et al. Quantifying the promise of lithium–air batteries for electric vehicles. Energy Environ. Sci. 7, 1555–1563 (2014).

    Article  CAS  Google Scholar 

  41. Graedel, T. E., Allenby, B. R. & Cοmrie, P. R. Matrix approaches to abridged life cycle assessment. Environ. Sci. Technol. 29, 134A–139A (1995).

    Article  CAS  Google Scholar 

  42. Graedel, T. E. Streamlined Life-Cycle Assessment (Prentice Hall, 1998).

    Google Scholar 

  43. Todd, J. A. et al. Streamlined Life-Cycle Assessment: A Final Report from the SETAC North America Streamlined LCA Workgroup (Society of Environmental Toxicology and Chemistry, 1999).

    Google Scholar 

  44. Anastas, P. T. & Warner, J. C. Green Chemistry: Theory and Practice (Oxford Univ. Press, 1998).

    Google Scholar 

  45. Anastas, P. T. & Eghbali, N. Green chemistry: principles and practice. Chem. Soc. Rev. 39, 301–312 (2010).

    Article  CAS  Google Scholar 

  46. Ellingsen, L. A.-W. et al. Life cycle assessment of a lithium-ion battery vehicle pack. J. Ind. Ecol. 18, 113–124 (2014).

    Article  CAS  Google Scholar 

  47. Nitta, N., Wu, F., Lee, J. T. & Yushin, G. Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015).

    Article  CAS  Google Scholar 

  48. Whittingham, M. S. History, evolution, and future status of energy storage. Proc. IEEE 100, 1518–1534 (2012).

    Article  CAS  Google Scholar 

  49. Yoshino, A. in Lithium-Ion Batteries: Advances and Applications (ed. Pistoia, G.) 1–20 (Elsevier, 2014).

    Book  Google Scholar 

  50. ReCiPe Mid/Endpoint Method, version 1.11 (ReCiPe, 2015).

  51. Ecoinvent Data and Reports 3.2 (Ecoinvent Centre, 2015).

  52. Hudak, N. S. in Lithium-Ion Batteries: Advances and Applications (ed. Pistoia, G.) 57–82 (Elsevier, 2014).

    Book  Google Scholar 

  53. Ohta, N., Nagaoka, K., Hoshi, K., Bitoh, S. & Inagaki, M. Carbon-coated graphite for anode of lithium ion rechargeable batteries: graphite substrates for carbon coating. J. Power Sources 194, 985–990 (2009).

    Article  CAS  Google Scholar 

  54. Latorre-Sanchez, M., Primo, A. & Garcia, H. Green synthesis of Fe3O4 nanoparticles embedded in a porous carbon matrix and its use as anode material in Li-ion batteries. J. Mater. Chem. 22, 21373–21375 (2012).

  55. Lahiri, I. & Choi, W. Carbon nanostructures in lithium ion batteries: past, present, and future. Crit. Rev. Solid State Mater. Sci. 38, 128–166 (2013).

    Article  CAS  Google Scholar 

  56. Safety Data Sheet – Carbon Nanostructures (US Research Nanomaterials, 2015).

  57. Material Safety Data Sheets (ESPI Metals, accessed 22 April 2016); www.espimetals.com/index.php/msds

  58. Kim, H. C. & Fthenakis, V. Life cycle energy and climate change implications of nanotechnologies. J. Ind. Ecol. 17, 528–541 (2013).

    Article  CAS  Google Scholar 

  59. Gutowski, T. G. et al. Thermodynamic analysis of resources used in manufacturing processes. Environ. Sci. Technol. 43, 1584–1590 (2009).

    Article  CAS  Google Scholar 

  60. Şengül, H., Theis, T. L. & Ghosh, S. Toward sustainable nanoproducts. J. Ind. Ecol. 12, 329–359 (2008).

    Article  CAS  Google Scholar 

  61. De Volder, M. F. L., Tawfick, S. H., Baughman, R. H. & Hart, A. J. Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013).

    Article  CAS  Google Scholar 

  62. Charitidis, C. A., Georgiou, P., Koklioti, M. A., Trompeta, A.-F. & Markakis, V. Manufacturing nanomaterials: from research to industry. Manuf. Rev. 1, 11 (2014).

    Google Scholar 

  63. Sharifi, S. et al. Toxicity of nanomaterials. Chem. Soc. Rev. 41, 2323–2343 (2012).

    Article  CAS  Google Scholar 

  64. Bystrzejewska-Piotrowska, G., Golimowski, J. & Urban, P. L. Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag. 29, 2587–2595 (2009).

    Article  CAS  Google Scholar 

  65. Köhler, A. R., Som, C., Helland, A. & Gottschalk, F. Studying the potential release of carbon nanotubes throughout the application life cycle. J. Clean. Prod. 16, 927–937 (2008).

    Article  Google Scholar 

  66. Graedel, T. E., Harper, E. M., Nassar, N. T., Nuss, P. & Reck, B. K. Criticality of metals and metalloids. Proc. Natl Acad. Sci. USA 112, 4257–4262 (2015).

    Article  CAS  Google Scholar 

  67. Lee, W. W. & Lee, J.-M. Novel synthesis of high performance anode materials for lithium-ion batteries (LIBs). J. Mater. Chem. A 2, 1589–1626 (2014).

    Article  CAS  Google Scholar 

  68. Reddy, M. V., Subba Rao, G. V. & Chowdari, B. V. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364–5457 (2013).

    Article  CAS  Google Scholar 

  69. Ma, Y., Ding, B., Ji, G. & Lee, J. Y. Carbon-encapsulated F-doped Li4Ti5O12 as a high rate anode material for Li+ batteries. ACS Nano 7, 10870–10878 (2013).

    Article  CAS  Google Scholar 

  70. Anderman, M. The Tesla Battery Report (Total Battery Consulting, 2016).

    Google Scholar 

  71. Safety Data Sheet – Lithium Titanium Oxide 1–6 (NEI Corporation, 2014).

  72. Gan, L. et al. A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium-ion batteries. Electrochim. Acta 104, 117–123 (2013).

    Article  CAS  Google Scholar 

  73. Zamfir, M. R., Nguyen, H. T., Moyen, E., Lee, Y. H. & Pribat, D. Silicon nanowires for Li-based battery anodes: a review. J. Mater. Chem. A 1, 9566–9586 (2013).

    Article  CAS  Google Scholar 

  74. Scrosati, B. & Garche, J. Lithium batteries: status, prospects and future. J. Power Sources 195, 2419–2430 (2010).

    Article  CAS  Google Scholar 

  75. Su, X. et al. Silicon-based nanomaterials for lithium-ion batteries: a review. Adv. Energy Mater. 4, 1–23 (2014).

    Article  CAS  Google Scholar 

  76. Ge, M., Rong, J., Fang, X. & Zhou, C. Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 12, 2318–2323 (2012).

    Article  CAS  Google Scholar 

  77. Jia, H. et al. Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material. Adv. Energy Mater. 1, 1036–1039 (2011).

    Article  CAS  Google Scholar 

  78. Safety Data Sheet — Silicon Nanopowder/Nanoparticles (US Research Nanomaterials, 2016).

  79. Material Safety Data Sheet — Monodispersed silicon nanowires (Sigma Aldrich, 2010).

  80. Safety Data Sheet — Tin Oxide Nanopowder (American Elements, 2015).

  81. Material Safety Data Sheet — Germanium Nanoparticles (US Research Nanomaterials, accessed 22 April 2016).

  82. Dong, Z. et al. The anode challenge for lithium-ion batteries: a mechanochemically synthesized Sn-Fe-C composite anode surpasses graphitic carbon. Adv. Sci. 3, 1–8 (2016).

    Article  CAS  Google Scholar 

  83. Sony's new nexelion hybrid lithium ion batteries to have thirty-percent more capacity than conventional offering. Sony (15 February 2005); http://www.sony.net/SonyInfo/News/Press/200502/05-006E/

  84. Fan, Q., Chupas, P. J. & Whittingham, M. S. Characterization of amorphous and crystalline tin–cobalt anodes. Electrochem. Solid State Lett. 10, A274–A278 (2007).

    Article  CAS  Google Scholar 

  85. Safety Data Sheet — Iron(II, III) Oxide Nanopowder (American Elements, 2015).

  86. SDS | LTS (LTS Chemical, accessed 22 April 2016); https://www.ltschem.com/msds/

  87. Material Safety Data Sheet — Cobalt (II) Oxide Nanoparticles (CoO) (US Research Nanomaterials, accessed 22 April 2016).

  88. Safety Data Sheet — Chromium Oxide Nanopowder (American Elements, 2015).

  89. Safety Data Sheet — Molybdenum Oxide Nanopowder (American Elements, 2015).

  90. Wang, B., Chen, J. S., Wu, H. B., Wang, Z. & Lou, X. W. Quasiemulsion-templated formation of alpha-Fe2O3 hollow spheres with enhanced lithium storage properties. J. Am. Chem. Soc. 133, 17146–17148 (2011).

    Article  CAS  Google Scholar 

  91. Etacheri, V., Marom, R., Elazari, R., Salitra, G. & Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011).

    Article  CAS  Google Scholar 

  92. Li, Q. et al. Balancing stability and specific energy in Li-rich cathodes for lithium ion batteries: a case study of a novel Li–Mn–Ni–Co oxide. J. Mater. Chem. A 3, 10592–10602 (2015).

    Article  CAS  Google Scholar 

  93. Rosenman, A. et al. Review on Li-sulfur battery systems: an integral perspective. Adv. Energy Mater. 5, 1–21 (2015).

    Article  CAS  Google Scholar 

  94. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

    Article  CAS  Google Scholar 

  95. Safety Data Sheet — Lithium Cobalt Oxide Nanopowder (American Elements, 2015).

  96. Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004).

    Article  CAS  Google Scholar 

  97. Hanisch, C., Diekmann, J., Stieger, A., Haselrieder, W. & Kwade, A. in Handbook of Clean Energy Systems http://dx.doi.org/10.1002/9781118991978.hces221 (2015).

    Google Scholar 

  98. Material Safety Data Sheet — Lithium Manganese Nickel Cobalt Oxide Powder (NEI Corporation, 2014).

  99. Safety Data Sheet — Lithium Nickel Cobalt Aluminum Oxide (NEI Corporation, 2014).

  100. Liu, J., Wang, R. & Xia, Y. Degradation and structural evolution of xLi2MnO3·(1−x)LiMn1/3Ni1/3Co1/3O2 during cycling. J. Electrochem. Soc. 161, A160–A167 (2013).

    Article  CAS  Google Scholar 

  101. Safety Data Sheet — LMR (Pfaltz & Bauer, 2013).

  102. Yu, H. & Zhou, H. High-energy cathode materials (Li2MnO3–LiMO2) for lithium-ion batteries. J. Phys. Chem. Lett. 4, 1268–1280 (2013).

    Article  CAS  Google Scholar 

  103. Liu, J. et al. General synthesis of xLi2MnO3·(1−x)LiMn1/3Ni1/3Co1/3O2 nanomaterials by a molten-salt method: towards a high capacity and high power cathode for rechargeable lithium batteries. J. Mater. Chem. 22, 25380–25387 (2012).

    Article  CAS  Google Scholar 

  104. Croy, J. R., Balasubramanian, M., Gallagher, K. G. & Burrell, A. K. Review of the US Department of Energy's 'deep dive' effort to understand voltage fade in Li- and Mn-rich cathodes. Acc. Chem. Res. 48, 2813–2821 (2015).

    Article  CAS  Google Scholar 

  105. Ellis, B. L., Lee, K. T. & Nazar, L. F. Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 22, 691–714 (2010).

    Article  CAS  Google Scholar 

  106. Pampal, E. S., Stojanovska, E., Simon, B. & Kilic, A. A review of nanofibrous structures in lithium ion batteries. J. Power Sources 300, 199–215 (2015).

    Article  CAS  Google Scholar 

  107. Song, M. K., Park, S., Alamgir, F. M., Cho, J. & Liu, M. Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Mater. Sci. Eng. R Rep. 72, 203–252 (2011).

    Article  CAS  Google Scholar 

  108. Satyavani, T. V. S. L., Srinivas Kumar, A. & Subba Rao, P. S. V. Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: a review. Eng. Sci. Technol. Int. J. 19, 178–188 (2015).

    Article  Google Scholar 

  109. Lin, Y.-C. et al. Thermodynamics, kinetics and structural evolution of ε-LiVOPO4 over multiple lithium intercalation. Chem. Mater. 28, 1794–1805 (2015).

    Article  CAS  Google Scholar 

  110. Safety Data Sheet — Lithium Manganese Oxide Nanoparticles (American Elements, 2015).

  111. Cheng, F. et al. Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries. Energy Environ. Sci. 4, 3668–3675 (2011).

    Article  CAS  Google Scholar 

  112. Li, W. et al. A sulfur cathode with pomegranate-like cluster structure. Adv. Energy Mater. 5, 1500211 (2015).

    Article  CAS  Google Scholar 

  113. Xu, R., Lu, J. & Amine, K. Progress in mechanistic understanding and characterization techniques of Li-S batteries. Adv. Energy Mater. 5, 1–22 (2015).

    Google Scholar 

  114. Cai, K., Song, M.-K., Cairns, E. J. & Zhang, Y. Nanostructured Li2S–C composites as cathode material for high-energy lithium/sulfur batteries. Nano Lett. 12, 6474–6479 (2012).

    Article  CAS  Google Scholar 

  115. Wu, S., Ge, R., Lu, M., Xu, R. & Zhang, Z. Graphene-based nano-materials for lithium-sulfur battery and sodium-ion battery. Nano Energy 15, 379–405 (2015).

    Article  CAS  Google Scholar 

  116. Son, Y., Lee, J. S., Son, Y., Jang, J. H. & Cho, J. Recent advances in lithium sulfide cathode materials and their use in lithium sulfur batteries. Adv. Energy Mater. 5, 1–14 (2015).

    Article  CAS  Google Scholar 

  117. Manthiram, A., Chung, S.-H. & Zu, C. Lithium–sulfur batteries: progress and prospects. Adv. Mater. 27, 1980–2006 (2015).

    Article  CAS  Google Scholar 

  118. Safety Data Sheet — Sulfur Nanopowder (American Elements, 2015).

  119. MSDS Information (American Polymer Standards Corporation, accessed 22 April 2016); www.ampolymer.com/I5-MSDS.html

  120. Sicherheitsdatenblatt — Polyaniline (Globale EHS-Manages, 2012).

  121. Nan, C. et al. Durable carbon-coated Li2(S) core–shell spheres for high performance lithium/sulfur cells. J. Am. Chem. Soc. 136, 4659–4663 (2014).

    Article  CAS  Google Scholar 

  122. Yang, Y. et al. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. J. Am. Chem. Soc. 134, 15387–15394 (2012).

    Article  CAS  Google Scholar 

  123. Georgi-Maschler, T., Friedrich, B., Weyhe, R., Heegn, H. & Rutz, M. Development of a recycling process for Li-ion batteries. J. Power Sources 207, 173–182 (2012).

    Article  CAS  Google Scholar 

  124. Reuter, M. A. et al. Metal Recycling: Opportunities, Limits, Infrastructure. A Report of the Working Group on the Global Metal Flows to the International Resource Panel (UNEP, 2013).

    Google Scholar 

  125. Gratz, E., Sa, Q., Apelian, D. & Wang, Y. A closed loop process for recycling spent lithium ion batteries. J. Power Sources 262, 255–262 (2014).

    Article  CAS  Google Scholar 

  126. Xu, J. et al. A review of processes and technologies for the recycling of lithium-ion secondary batteries. J. Power Sources 177, 512–527 (2008).

    Article  CAS  Google Scholar 

  127. Som, C. et al. The importance of life cycle concepts for the development of safe nanoproducts. Toxicology 269, 160–169 (2010).

    Article  CAS  Google Scholar 

  128. Scofield, M. E., Liu, H. & Wong, S. S. A concise guide to sustainable PEMFCs: recent advances in improving both oxygen reduction catalysts and proton exchange membranes. Chem. Soc. Rev. 44, 5836–5860 (2015).

    Article  CAS  Google Scholar 

  129. Duan, H. & Xu, C. Nanoporous PtPd alloy electrocatalysts with high activity and stability toward oxygen reduction reaction. Electrochim. Acta 152, 417–424 (2015).

    Article  CAS  Google Scholar 

  130. Chen, Z., Higgins, D., Yu, A., Zhang, L. & Zhang, J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 4, 3167–3192 (2011).

    Article  CAS  Google Scholar 

  131. Shao, M., Chang, Q., Dodelet, J.-P. & Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116, 3594–3657 (2016).

    Article  CAS  Google Scholar 

  132. Morozan, A., Jousselme, B. & Palacin, S. Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy Environ. Sci. 4, 1238–1254 (2011).

    Article  CAS  Google Scholar 

  133. Zhang, W. & Pintauro, P. N. High-performance nanofiber fuel cell electrodes. ChemSusChem 4, 1753–1757 (2011).

    Article  CAS  Google Scholar 

  134. Brodt, M. et al. Fabrication, in-situ performance, and durability of nanofiber fuel cell electrodes. J. Electrochem. Soc. 162, F84–F91 (2014).

    Article  CAS  Google Scholar 

  135. Alia, S. M. et al. Platinum-coated nickel nanowires as oxygen-reducing electrocatalysts. ACS Catal. 4, 1114–1119 (2014).

    Article  CAS  Google Scholar 

  136. Wang, C., Markovic, N. M. & Stamenkovic, V. R. Advanced platinum alloy electrocatalysts for the oxygen reduction reaction. ACS Catal. 2, 891–898 (2012).

    Article  CAS  Google Scholar 

  137. Choi, S.-I. et al. Synthesis and characterization of 9 nm Pt–Ni octahedra with a record high activity of 3.3 A/mg(Pt) for the oxygen reduction reaction. Nano Lett. 13, 3420–3425 (2013).

    Article  CAS  Google Scholar 

  138. Guo, S. et al. FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 52, 3465–3468 (2013).

    Article  CAS  Google Scholar 

  139. Tseng, C.-J., Lo, S.-T., Lo, S.-C. & Chu, P. P. Characterization of Pt–Cu binary catalysts for oxygen reduction for fuel cell applications. Mater. Chem. Phys. 100, 385–390 (2006).

    Article  CAS  Google Scholar 

  140. Liu, J. et al. Impact of Cu–Pt nanotubes with a high degree of alloying on electro-catalytic activity toward oxygen reduction reaction. Electrochim. Acta 152, 425–432 (2015).

    Article  CAS  Google Scholar 

  141. Nuss, P. & Eckelman, M. J. Life cycle assessment of metals: a scientific synthesis. PLOS One 9, 1–12 (2014).

    Google Scholar 

  142. Proietti, E. et al. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2, 416 (2011).

    Article  CAS  Google Scholar 

  143. Choi, C. H., Chung, M. W., Jun, Y. J. & Woo, S. I. Doping of chalcogens (sulfur and/or selenium) in nitrogen-doped graphene–CNT self-assembly for enhanced oxygen reduction activity in acid media. RSC Adv. 3, 12417–12422 (2013).

  144. Wei, Q. et al. Nitrogen-doped carbon nanotube and graphene materials for oxygen reduction reactions. Catalysts 5, 1574–1602 (2015).

    Article  CAS  Google Scholar 

  145. Zhan, Y. et al. Iodine/nitrogen co-doped graphene as metal free catalyst for oxygen reduction reaction. Carbon N. Y. 95, 930–939 (2015).

    Article  CAS  Google Scholar 

  146. Li, H. et al. A review of water flooding issues in the proton exchange membrane fuel cell. J. Power Sources 178, 103–117 (2008).

    Article  CAS  Google Scholar 

  147. Higgins, D. et al. Development and simulation of sulfur-doped graphene supported platinum with exemplary stability and activity towards oxygen reduction. Adv. Funct. Mater. 24, 4325–4336 (2014).

    Article  CAS  Google Scholar 

  148. Shahgaldi, S. & Hamelin, J. Improved carbon nanostructures as a novel catalyst support in the cathode side of PEMFC: a critical review. Carbon 94, 705–728 (2015).

    Article  CAS  Google Scholar 

  149. Sharma, S. & Pollet, B. G. Support materials for PEMFC and DMFC electrocatalysts — a review. J. Power Sources 208, 96–119 (2012).

    Article  CAS  Google Scholar 

  150. Higgins, D. C., Meza, D. & Chen, Z. Nitrogen-doped carbon nanotubes as platinum catalyst supports for oxygen reduction reaction in proton exchange membrane fuel cells. J. Phys. Chem. C 114, 21982–21988 (2010).

    Article  CAS  Google Scholar 

  151. Yee, R. S. L., Rozendal, R. A., Zhang, K. & Ladewig, B. P. Cost effective cation exchange membranes: a review. Chem. Eng. Res. Des. 90, 950–959 (2012).

    Article  CAS  Google Scholar 

  152. Hongsirikarn, K., Goodwin, J. G., Greenway, S. & Creager, S. Influence of ammonia on the conductivity of Nafion membranes. J. Power Sources 195, 30–38 (2010).

    Article  CAS  Google Scholar 

  153. Tripathi, B. P. & Shahi, V. K. Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog. Polym. Sci. 36, 945–979 (2011).

    Article  CAS  Google Scholar 

  154. Kraytsberg, A. & Ein-Eli, Y. Review of advanced materials for proton exchange membrane fuel cells. Energy Fuels 28, 7303–7330 (2014).

    Article  CAS  Google Scholar 

  155. Ballengee, J. B., Haugen, G. M., Hamrock, S. J. & Pintauro, P. N. Properties and fuel cell performance of a nanofiber composite membrane with 660 equivalent weight perfluorosulfonic acid. J. Electrochem. Soc. 160, F429–F435 (2013).

    Article  CAS  Google Scholar 

  156. Tanaka, M. Development of ion conductive nanofibers for polymer electrolyte fuel cells. Polym. J. 48, 51–58 (2015).

    Article  CAS  Google Scholar 

  157. Wycisk, R., Pintauro, P. N. & Park, J. W. New developments in proton conducting membranes for fuel cells. Curr. Opin. Chem. Eng. 4, 71–78 (2014).

    Article  Google Scholar 

  158. Ballengee, J. B. & Pintauro, P. N. Composite fuel cell membranes from dual-nanofiber electrospun mats. Macromolecules 44, 7307–7314 (2011).

    Article  CAS  Google Scholar 

  159. Subianto, S. Recent advances in polybenzimidazole/phosphoric acid membranes for high-temperature fuel cells. Polym. Int. 63, 1134–1144 (2014).

    Article  CAS  Google Scholar 

  160. Safety Data Sheet Product — Phosphotungstic Acid (Ted Pella, 2015).

  161. Jun, Y., Zarrin, H., Fowler, M. & Chen, Z. Functionalized titania nanotube composite membranes for high temperature proton exchange membrane fuel cells. Int. J. Hydrogen Energy 36, 6073–6081 (2011).

    Article  CAS  Google Scholar 

  162. Wang, Y., Jin, J., Yang, S., Li, G. & Qiao, J. Highly active and stable platinum catalyst supported on porous carbon nanofibers for improved performance of PEMFC. Electrochim. Acta 177, 181–189 (2015).

    Article  CAS  Google Scholar 

  163. Chalkovaa, E. et al. Composite proton conductive membranes for elevated temperature and reduced relative humidity PEMFC. ECS Trans. 25, 1141–1150 (2009).

    Article  Google Scholar 

  164. Kalappa, P. & Lee, J.-H. Proton conducting membranes based on sulfonated poly(ether ether ketone)/TiO2 nanocomposites for a direct methanol fuel cell. Polym. Int. 56, 371–375 (2007).

    Article  CAS  Google Scholar 

  165. Chandan, A. et al. High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) — a review. J. Power Sources 231, 264–278 (2013).

    Article  CAS  Google Scholar 

  166. Lu, J., Lu, S. & Jiang, S. P. Highly ordered mesoporous Nafion membranes for fuel cells. Chem. Commun. 47, 3216–3218 (2011).

    Article  CAS  Google Scholar 

  167. Zarrin, H., Higgins, D., Jun, Y., Chen, Z. & Fowler, M. Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. J. Phys. Chem. C 115, 20774–20781 (2011).

    Article  CAS  Google Scholar 

  168. Patel, A. & Dawson, R. Recovery of platinum group metal value via potassium iodide leaching. Hydrometallurgy 157, 219–225 (2015).

    Article  CAS  Google Scholar 

  169. Safety Data Sheet — Chlorine 1–6 (Airgas 2015).

  170. Safety Data Sheet — Sodium Cyanide (Columbus Chemical Industries, 2014).

  171. Safety Data Sheet — Aqua Regia (Columbus Chemical Industries, 2013).

  172. Handley, C., Brandon, N. P. & Van Der Vorst, R. Impact of the European Union vehicle waste directive on end-of-life options for polymer electrolyte fuel cells. J. Power Sources 106, 344–352 (2002).

    Article  CAS  Google Scholar 

  173. Shiroishi, H. et al. Dissolution rate of noble metals for electrochemical recycle in polymer electrolyte fuel cells. Electrochemistry 80, 898–903 (2012).

    Article  CAS  Google Scholar 

  174. Xu, F., Mu, S. & Pan, M. Recycling of membrane electrode assembly of PEMFC by acid processing. Int. J. Hydrogen Energy 35, 2976–2979 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank D. U. Lee and H. Zarrin for internal review and discussions. We also thank C. Bangs, D. Rickert, M. Quix, C. Stuyck, R. Weyhe and Q. Pan for communication on recycling of PEMFCs and LIBs. We also thank B. Reck and X. Hu for discussions. This work was financed by the Norwegian University of Science and Technology, the Research Council of Norway through the Centre for Sustainable Energy Studies (grant 209697), and the European Union's Horizon 2020 research and innovation programme (grant 646286). The authors remain solely responsible for the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linda Ager-Wick Ellingsen or Christine Roxanne Hung.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1611 kb)

Supplementary information

Data sources for Figures 2–5 (PDF 327 kb)

Supplementary information

Supplementary Text (XLSX 3147 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellingsen, LW., Hung, C., Majeau-Bettez, G. et al. Nanotechnology for environmentally sustainable electromobility. Nature Nanotech 11, 1039–1051 (2016). https://doi.org/10.1038/nnano.2016.237

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.237

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing