Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electric-field-driven switching of individual magnetic skyrmions

Abstract

Controlling magnetism with electric fields is a key challenge to develop future energy-efficient devices1,2. The present magnetic information technology is mainly based on writing processes requiring either local magnetic fields or spin torques, but it has also been demonstrated that magnetic properties can be altered on the application of electric fields2,3,4,5. This has been ascribed to changes in magnetocrystalline anisotropy caused by spin-dependent screening and modifications of the band structure6,7,8, changes in atom positions5,9,10 or differences in hybridization with an adjacent oxide layer4,11. However, the switching between states related by time reversal, for example magnetization up and down as used in the present technology, is not straightforward because the electric field does not break time-reversal symmetry. Several workarounds have been applied to toggle between bistable magnetic states with electric fields12,13, including changes of material composition as a result of electric fields14. Here we demonstrate that local electric fields can be used to switch reversibly between a magnetic skyrmion15,16 and the ferromagnetic state. These two states are topologically inequivalent, and we find that the direction of the electric field directly determines the final state. This observation establishes the possibility to combine electric-field writing with the recently envisaged skyrmion racetrack-type memories17,18.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Field-dependent magnetic states of the Fe triple layer on Ir(111).
Figure 2: Spin structure of the magnetic objects.
Figure 3: Writing and deleting of magnetic skyrmions.
Figure 4: Electric-field-driven switching of magnetic skyrmions.

Similar content being viewed by others

References

  1. Tsymbal, E. Y. Spintronics: electric toggling of magnets. Nat. Mater. 11, 12–13 (2012).

    Article  CAS  Google Scholar 

  2. Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotech. 10, 209–220 (2015).

    Article  CAS  Google Scholar 

  3. Zhang, S. Spin-dependent surface screening in ferromagnets and magnetic tunnel junctions. Phys. Rev. Lett. 83, 640–643 (1999).

    Article  CAS  Google Scholar 

  4. Weisheit, M. et al. Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315, 349–351 (2007).

    Article  CAS  Google Scholar 

  5. Brovko, O. O., Ruiz-Díaz, P., Dasa, T. R. & Stepanyuk, V. S. Controlling magnetism on metal surfaces with non-magnetic means: electric fields and surface charging. J. Phys. Condens. Matter 26, 093001 (2014).

    Article  Google Scholar 

  6. Duan, C.-G. et al. Surface magnetoelectric effect in ferromagnetic metal films. Phys. Rev. Lett. 101, 137201 (2008).

    Article  Google Scholar 

  7. Nakamura, K. et al. Giant modification of the magnetocrystalline anisotropy in transition-metal monolayers by an external electric field. Phys. Rev. Lett. 102, 187201 (2009).

    Article  Google Scholar 

  8. Oba, M. et al. Electric-field-induced modification of the magnon energy, exchange interaction, and Curie temperature of transition-metal thin films. Phys. Rev. Lett. 114, 107202 (2015).

    Article  CAS  Google Scholar 

  9. Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

    Article  CAS  Google Scholar 

  10. Gerhard, L. et al. Magnetoelectric coupling at metal surfaces. Nat. Nanotech. 5, 792–797 (2010).

    Article  CAS  Google Scholar 

  11. Maruyama, T. et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotech. 4, 158–161 (2009).

    Article  CAS  Google Scholar 

  12. Shiota, Y. et al. Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nat. Mater. 11, 39–43 (2012).

    Article  CAS  Google Scholar 

  13. Wang, W.-G., Li, M., Hageman, S. & Chien, C. L. Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 11, 64–68 (2012).

    Article  CAS  Google Scholar 

  14. Bauer, U. et al. Magneto–ionic control of interfacial magnetism. Nat. Mater. 14, 174–181 (2015).

    Article  CAS  Google Scholar 

  15. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotech. 8, 899–911 (2013).

    Article  CAS  Google Scholar 

  16. von Bergmann, K., Kubetzka, A., Pietzsch, O. & Wiesendanger, R. Interface-induced chiral domain walls, spin spirals and skyrmions revealed by spin-polarized scanning tunneling microscopy. J. Phys. Condens. Matter 26, 394002 (2014).

    Article  Google Scholar 

  17. Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotech. 8, 152–156 (2013).

    Article  CAS  Google Scholar 

  18. Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    Article  CAS  Google Scholar 

  19. Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).

    Article  CAS  Google Scholar 

  20. Jonietz, F. et al. Spin transfer torques in MnSi at ultralow current densities. Science 330, 1648–1651 (2010).

    Article  CAS  Google Scholar 

  21. Sampaio, J., Cros, V., Rohart, S., Thiaville, A. & Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotech. 8, 839–844 (2013).

    Article  CAS  Google Scholar 

  22. Hsu, P.-J. et al. Guiding spin spirals by local uniaxial strain relief. Phys. Rev. Lett. 116, 017201 (2016).

    Article  Google Scholar 

  23. Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011).

    Article  CAS  Google Scholar 

  24. Heinze, S. Simulation of spin-polarized scanning tunneling microscopy images of nanoscale non-collinear magnetic structures. Appl. Phys. A 85, 407–414 (2006).

    Article  CAS  Google Scholar 

  25. Hanneken, C. et al. Electrical detection of magnetic skyrmions by tunnelling non-collinear magnetoresistance. Nat. Nanotech. 10, 1039–1042 (2015).

    Article  CAS  Google Scholar 

  26. Sonntag, A. et al. Electric-field-induced magnetic anisotropy in a nanomagnet investigated on the atomic scale. Phys. Rev. Lett. 112, 017204 (2014).

    Article  CAS  Google Scholar 

  27. Freimuth, F., Bamler, R., Mokrousov, Y. & Rosch, A. Phase-space Berry phases in chiral magnets: Dzyaloshinskii–Moriya interaction and the charge of skyrmions. Phys. Rev. B 88, 214409 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We thank B. Dupé, S. Heinze, A. Sonntag, and J. Hagemeister for discussions. Financial support from the Deutsche Forschungsgemeinschaft via SFB 668, from the European Union Horizon 2020 research and innovation programme under grant agreement No. 665095 and from the Hamburgische Stiftung für Wissenschaften, Entwicklung und Kultur Helmut und Hannelore Greve is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

P.-J.H. performed the measurements and prepared the figures, K.v.B. wrote the manuscript, N.R. and A.K. developed the spin model and made the STM simulations, and all authors contributed to data analysis, discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to Kirsten von Bergmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 637 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, PJ., Kubetzka, A., Finco, A. et al. Electric-field-driven switching of individual magnetic skyrmions. Nature Nanotech 12, 123–126 (2017). https://doi.org/10.1038/nnano.2016.234

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.234

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing