Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of nanotechnology in the development of battery materials for electric vehicles

A Corrigendum to this article was published on 10 January 2017

This article has been updated

Abstract

A significant amount of battery research and development is underway, both in academia and industry, to meet the demand for electric vehicle applications. When it comes to designing and fabricating electrode materials, nanotechnology-based approaches have demonstrated numerous benefits for improved energy and power density, cyclability and safety. In this Review, we offer an overview of nanostructured materials that are either already commercialized or close to commercialization for hybrid electric vehicle applications, as well as those under development with the potential to meet the requirements for long-range electric vehicles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of LiFePO4.
Figure 2: Comparison of energy diagrams of various cathode materials.
Figure 3: Schematics of strategies to protect cathodes from reacting with non-aqueous electrolytes.
Figure 4: The lithium titanate-carbon nanocomposites as anodes for LIBs.
Figure 5: The 'pomegranate'-structured Si–C nanocomposites as anodes for LIBs.

Similar content being viewed by others

Change history

  • 14 December 2016

    In the original version of this Review Article Feng Pan's affiliation should have read: 'School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, PR China'. This has been updated in the online versions of the Review.

References

  1. Dunn, B., Kamath, H. & Tarascon, J. M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

    Article  CAS  Google Scholar 

  2. Etacheri, V., Marom, R., Elazari, R., Salitra, G. & Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energy. Environ. Sci. 4, 3243–3262 (2011).

    CAS  Google Scholar 

  3. Goodenough, J. B. & Park, K.-S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

    CAS  Google Scholar 

  4. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

    CAS  Google Scholar 

  5. Lu, J. et al. Aprotic and aqueous Li–O2 batteries. Chem. Rev. 114, 5611–5640 (2014).

    CAS  Google Scholar 

  6. Chen, Z., Lu, Z. & Dahn, J. R. Staging phase transitions in LixCoO2 . J. Electrochem. Soc. 149, A1604–A1609 (2002).

    CAS  Google Scholar 

  7. Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997).

    CAS  Google Scholar 

  8. Chung, S. Y., Bloking, J. T. & Chiang, Y. M. Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 1, 123–128 (2002).

    CAS  Google Scholar 

  9. Malik, R., Zhou, F. & Ceder, G. Kinetics of non-equilibrium lithium incorporation in LiFePO4 . Nat. Mater. 10, 587–590 (2011).

    CAS  Google Scholar 

  10. Zhang, K. et al. Conformal coating strategy comprising N-doped carbon and conventional graphene for achieving ultrahigh power and cyclability of LiFePO4 . Nano Lett. 15, 6756–6763 (2015).

    CAS  Google Scholar 

  11. Lepage, D., Michot, C., Liang, G., Gauthier, M. & Schougaard, S. B. A soft chemistry approach to coating of LiFePO4 with a conducting polymer. Angew. Chem. Int. Ed. 50, 6884–6887 (2011).

    CAS  Google Scholar 

  12. Hu, C. et al. Suppressing Li3PO4 impurity formation in LiFePO4/Fe2P by a nonstoichiometry synthesis and its effect on electrochemical properties. Mater. Lett. 65, 1323–1326 (2011).

    CAS  Google Scholar 

  13. Herle, P. S., Ellis, B., Coombs, N. & Nazar, L. F. Nano-network electronic conduction in iron and nickel olivine phosphates. Nat. Mater. 3, 147–152 (2004).

    CAS  Google Scholar 

  14. Zhang, P. X. et al. First-principles study on the electronic structure of a LiFePO4 (010) surface adsorbed with carbon. J. Alloys Compd. 540, 121–126 (2012).

    CAS  Google Scholar 

  15. Nishimura, S.-i. et al. Experimental visualization of lithium diffusion in LixFePO4 . Nat. Mater. 7, 707–711 (2008).

    CAS  Google Scholar 

  16. Malik, R., Burch, D., Bazant, M. & Ceder, G. Particle size dependence of the ionic diffusivity. Nano Lett. 10, 4123–4127 (2010).

    CAS  Google Scholar 

  17. Yuan, A., Tian, L., Xu, W. & Wang, Y. Al-doped spinel LiAl0.1Mn1.9O4 with improved high-rate cyclability in aqueous electrolyte. J. Power Sources 195, 5032–5038 (2010).

    CAS  Google Scholar 

  18. Shkrob, I. A. et al. Manganese in graphite anode and capacity fade in Li ion batteries. J. Phys. Chem. C 118, 24335–24348 (2014).

    CAS  Google Scholar 

  19. Kumagai, N., Komaba, S., Kataoka, Y. & Koyanagi, M. Electrochemical behavior of graphite electrode for lithium ion batteries in Mn and Co additive electrolytes. Chem. Lett. 29, 1154–1155 (2000).

    Google Scholar 

  20. Lin, Y.-M. et al. Enhanced high-rate cycling stability of LiMn2O4 cathode by ZrO2 coating for Li-ion battery. J. Electrochem. Soc. 152, A1526–A1532 (2005).

    CAS  Google Scholar 

  21. Kim, J.-S. et al. The electrochemical stability of spinel electrodes coated with ZrO2, Al2O3, and SiO2 from colloidal suspensions. J. Electrochem. Soc. 151, A1755–A1761 (2004).

    CAS  Google Scholar 

  22. Lu, J. et al. Effectively suppressing dissolution of manganese from spinel lithium manganate via a nanoscale surface-doping approach. Nat. Commun. 5, 5693 (2014).

    CAS  Google Scholar 

  23. Yao, J., Shen, C., Zhang, P., Gregory, D. & Wang, L. Surface coating of LiMn2O4 spinel via in situ hydrolysis route: effect of the solution. Ionics 19, 739–745 (2013).

    CAS  Google Scholar 

  24. Liu, Y., Lv, J., Fei, Y., Huo, X. & Zhu, Y. Improvement of storage performance of LiMn2O4/graphite battery with AlF3-coated LiMn2O4 . Ionics 19, 1241–1246 (2013).

    CAS  Google Scholar 

  25. Komaba, S. et al. Impact of 2-vinylpyridine as electrolyte additive on surface and electrochemistry of graphite for C/LiMn2O4 Li-ion cells. J. Electrochem. Soc. 152, A937–A946 (2005).

    CAS  Google Scholar 

  26. Zhan, C., Qiu, X., Lu, J. & Amine, K. Tuning the Mn deposition on the anode to improve the cycle performance of the Mn-based lithium ion battery. Adv. Mater. Interfaces 3, 1500856 (2016).

    Google Scholar 

  27. Sun, Y.-K. et al. The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries. Adv. Mater. 24, 1192–1196 (2012).

    CAS  Google Scholar 

  28. Chebiam, R. V., Kannan, A. M., Prado, F. & Manthiram, A. Comparison of the chemical stability of the high energy density cathodes of lithium-ion batteries. Electrochem. Commun. 3, 624–627 (2001).

    CAS  Google Scholar 

  29. Liu, L. & Chen, X. Titanium dioxide nanomaterials: self-structural modifications. Chem. Rev. 114, 9890–9918 (2014).

    CAS  Google Scholar 

  30. Chen, Z., Qin, Y., Amine, K. & Sun, Y. K. Role of surface coating on cathode materials for lithium-ion batteries. J. Mater. Chem. 20, 7606–7612 (2010).

    CAS  Google Scholar 

  31. Cho, J., Kim, Y. W., Kim, B., Lee, J. G. & Park, B. A breakthrough in the safety of lithium secondary batteries by coating the cathode material with AlPO4 nanoparticles. Angew. Chem. Int. Ed. 42, 1618–1621 (2003).

    CAS  Google Scholar 

  32. Chen, Z. & Dahn, J. R. Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V. Electrochim. Acta 49, 1079–1090 (2004).

    CAS  Google Scholar 

  33. Meng, X., Yang, X.-Q. & Sun, X. Emerging applications of atomic layer deposition for lithium-ion battery studies. Adv. Mater. 24, 3589–3615 (2012).

    CAS  Google Scholar 

  34. Sun, Y.-K., Myung, S.-T., Kim, M.-H., Prakash, J. & Amine, K. Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core–shell structure as the positive electrode material for lithium batteries. J. Am. Chem. Soc. 127, 13411–13418 (2005).

    Article  CAS  Google Scholar 

  35. Sun, Y. K. et al. Nanostructured high-energy cathode materials for advanced lithium batteries. Nat. Mater. 11, 942–947 (2012).

    CAS  Google Scholar 

  36. Noh, H.-J. et al. Cathode material with nanorod structure — an application for advanced high-energy and safe lithium batteries. Chem. Mater. 25, 2109–2115 (2013).

    CAS  Google Scholar 

  37. Xu, M. et al. Tris (pentafluorophenyl) phosphine: an electrolyte additive for high voltage Li-ion batteries. Electrochem. Commun. 18, 123–126 (2012).

    CAS  Google Scholar 

  38. Abe, K., Ushigoe, Y., Yoshitake, H. & Yoshio, M. Functional electrolytes: novel type additives for cathode materials, providing high cycleability performance. J. Power Sources 153, 328–335 (2006).

    CAS  Google Scholar 

  39. Tarnopolskiy, V. et al. Beneficial influence of succinic anhydride as electrolyte additive on the self-discharge of 5 V LiNi0.4Mn1.6O4 cathodes. J. Power Sources 236, 39–46 (2013).

    CAS  Google Scholar 

  40. von Cresce, A. & Xu, K. Electrolyte additive in support of 5 V Li ion chemistry. J. Electrochem. Soc. 158, A337–A342 (2011).

    CAS  Google Scholar 

  41. Winter, M., Besenhard, J. O., Spahr, M. E. & Novák, P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10, 725–763 (1998).

    CAS  Google Scholar 

  42. Dahn, J. et al. in Lithium Batteries: New Materials, Developments, and Perspectives (ed. Pistoria, G.) Ch. 1 (Elsevier, 1994).

    Google Scholar 

  43. Ohzuku, T., Ueda, A. & Yamamoto, N. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc. 142, 1431–1435 (1995).

    CAS  Google Scholar 

  44. Park, C.-M., Kim, J.-H., Kim, H. & Sohn, H.-J. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 39, 3115–3141 (2010).

    CAS  Google Scholar 

  45. Reddy, M., Subba Rao, G. & Chowdari, B. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364–5457 (2013).

    CAS  Google Scholar 

  46. Endo, M., Kim, C., Nishimura, K., Fujino, T. & Miyashita, K. Recent development of carbon materials for Li ion batteries. Carbon 38, 183–197 (2000).

    CAS  Google Scholar 

  47. Buqa, H., Goers, D., Holzapfel, M., Spahr, M. E. & Novák, P. High rate capability of graphite negative electrodes for lithium-ion batteries. J. Electrochem. Soc. 152, A474–A481 (2005).

    CAS  Google Scholar 

  48. Aurbach, D., Markovsky, B., Weissman, I., Levi, E. & Ein-Eli, Y. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim. Acta 45, 67–86 (1999).

    CAS  Google Scholar 

  49. Smart, M. C. et al. Irreversible capacities of graphite in low-temperature electrolytes for lithium-ion batteries. J. Electrochem. Soc. 146, 3963–3969 (1999).

    CAS  Google Scholar 

  50. Jeong, S.-K., Inaba, M., Abe, T. & Ogumi, Z. Surface film formation on graphite negative electrode in lithium-ion batteries: AFM study in an ethylene carbonate-based solution. J. Electrochem. Soc. 148, A989–A993 (2001).

    CAS  Google Scholar 

  51. Kulova, T. L. et al. Electrochemical characteristics of negative electrodes made of ozone-treated graphite for lithium-ion batteries. Russ. J. Electrochem. 37, 1017–1023 (2001).

    CAS  Google Scholar 

  52. Li, H. & Zhou, H. Enhancing the performances of Li-ion batteries by carbon-coating: present and future. Chem. Commun. 48, 1201–1217 (2012).

    CAS  Google Scholar 

  53. Yoshio, M., Wang, H., Fukuda, K., Hara, Y. & Adachi, Y. Effect of carbon coating on electrochemical performance of treated natural graphite as lithium-ion battery anode material. J. Electrochem. Soc. 147, 1245–1250 (2000).

    CAS  Google Scholar 

  54. Yoshio, M., Wang, H. & Fukuda, K. Spherical carbon-coated natural graphite as a lithium-ion battery-anode material. Angew. Chem. Int. Ed. 42, 4203–4206 (2003).

    CAS  Google Scholar 

  55. Yoshio, M. et al. Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere. J. Mater. Chem. 14, 1754–1758 (2004).

    CAS  Google Scholar 

  56. Gao, J. et al. Suppression of PC decomposition at the surface of graphitic carbon by Cu coating. Electrochem. Commun. 8, 1726–1730 (2006).

    CAS  Google Scholar 

  57. Yang, L. C., Guo, W. L., Shi, Y. & Wu, Y. P. Graphite@MoO3 composite as anode material for lithium ion battery in propylene carbonate-based electrolyte. J. Alloys Compd. 501, 218–220 (2010).

    CAS  Google Scholar 

  58. Guo, K., Pan, Q. & Fang, S. Poly(acrylonitrile) encapsulated graphite as anode materials for lithium ion batteries. J. Power Sources 111, 350–356 (2002).

    CAS  Google Scholar 

  59. Zhang, H.-L. et al. Electrochemical performance of pyrolytic carbon-coated natural graphite spheres. Carbon 44, 2212–2218 (2006).

    CAS  Google Scholar 

  60. Park, G., Gunawardhana, N., Nakamura, H., Lee, Y. & Yoshio, M. Suppression of Li deposition on surface of graphite using carbon coating by thermal vapor deposition process. J. Power Sources 196, 9820–9824 (2011).

    CAS  Google Scholar 

  61. Nozaki, H., Nagaoka, K., Hoshi, K., Ohta, N. & Inagaki, M. Carbon-coated graphite for anode of lithium ion rechargeable batteries: carbon coating conditions and precursors. J. Power Sources 194, 486–493 (2009).

    CAS  Google Scholar 

  62. Ding, Y.-S. et al. Characteristics of graphite anode modified by CVD carbon coating. Surf. Coat. Technol. 200, 3041–3048 (2006).

    CAS  Google Scholar 

  63. Lee, M.-L. et al. Atomic layer deposition of TiO2 on negative electrode for lithium ion batteries. J. Power Sources 244, 410–416 (2013).

    CAS  Google Scholar 

  64. Lu, W., Donepudi, V. S., Prakash, J., Liu, J. & Amine, K. Electrochemical and thermal behavior of copper coated type MAG-20 natural graphite. Electrochim. Acta 47, 1601–1606 (2002).

    CAS  Google Scholar 

  65. Pan, Q., Guo, K., Wang, L. & Fang, S. Novel modified graphite as anode material for lithium-ion batteries. J. Electrochem. Soc. 149, A1218–A1223 (2002).

    CAS  Google Scholar 

  66. Veeraraghavan, B., Paul, J., Haran, B. & Popov, B. Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries. J. Power Sources 109, 377–387 (2002).

    CAS  Google Scholar 

  67. Zhang, H.-L., Li, F., Liu, C. & Cheng, H.-M. Poly(vinyl chloride) (PVC) coated idea revisited: influence of carbonization procedures on PVC-coated natural graphite as anode materials for lithium ion batteries. J. Phys. Chem. C 112, 7767–7772 (2008).

    CAS  Google Scholar 

  68. Ouyang, C. Y., Zhong, Z. Y. & Lei, M. S. Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel. Electrochem. Commun. 9, 1107–1112 (2007).

    CAS  Google Scholar 

  69. Prakash, A. S. et al. Solution-combustion synthesized nanocrystalline Li4Ti5O12 as high-rate performance Li-ion battery anode. Chem. Mater. 22, 2857–2863 (2010).

    CAS  Google Scholar 

  70. Rahman, M. M., Wang, J.-Z., Hassan, M. F., Wexler, D. & Liu, H. K. Amorphous carbon coated high grain boundary density dual phase Li4Ti5O12-TiO2: a nanocomposite anode material for Li-ion batteries. Adv. Energy Mater. 1, 212–220 (2011).

    CAS  Google Scholar 

  71. Kim, H.-K., Bak, S.-M. & Kim, K.-B. Li4Ti5O12/reduced graphite oxide nano-hybrid material for high rate lithium-ion batteries. Electrochem. Commun. 12, 1768–1771 (2010).

    CAS  Google Scholar 

  72. Shen, L., Uchaker, E., Zhang, X. & Cao, G. Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium ion batteries. Adv. Mater. 24, 6502–6506 (2012).

    CAS  Google Scholar 

  73. Chiu, H.-c. & Demopoulos, G. P. A novel green approach to synthesis of nanostructured Li4Ti5O12 anode material. ECS Trans. 50, 119–126 (2013).

    Google Scholar 

  74. Chen, J., Yang, L., Fang, S., Hirano, S.-i. & Tachibana, K. Synthesis of hierarchical mesoporous nest-like Li4Ti5O12 for high-rate lithium ion batteries. J. Power Sources 200, 59–66 (2012).

    CAS  Google Scholar 

  75. Laumann, A. et al. Rapid green continuous flow supercritical synthesis of high performance Li4Ti5O12 nanocrystals for Li ion battery applications. J. Electrochem. Soc. 159, A166–A171 (2011).

    Google Scholar 

  76. Bai, Y., Wang, F., Wu, F., Wu, C. & Bao, L.-y. Influence of composite LiCl–KCl molten salt on microstructure and electrochemical performance of spinel Li4Ti5O12 . Electrochim. Acta 54, 322–327 (2008).

    CAS  Google Scholar 

  77. Li, J., Jin, Y.-L., Zhang, X.-G. & Yang, H. Microwave solid-state synthesis of spinel Li4Ti5O12 nanocrystallites as anode material for lithium-ion batteries. Solid State Ion. 178, 1590–1594 (2007).

    CAS  Google Scholar 

  78. Shen, L. et al. Three-dimensional coherent titania–mesoporous carbon nanocomposite and its lithium-ion storage properties. ACS Appl. Mater. Interfaces 4, 2985–2992 (2012).

    CAS  Google Scholar 

  79. Djenizian, T., Hanzu, I. & Knauth, P. Nanostructured negative electrodes based on titania for Li-ion microbatteries. J. Mater. Chem. 21, 9925–9937 (2011).

    CAS  Google Scholar 

  80. Liu, H. et al. Mesoporous TiO2–B microspheres with superior rate performance for lithium ion batteries. Adv. Mater. 23, 3450–3454 (2011).

    CAS  Google Scholar 

  81. Boukamp, B. A., Lesh, G. C. & Huggins, R. A. All-solid lithium electrodes with mixed-conductor matrix. J. Electrochem. Soc. 128, 725–729 (1981).

    CAS  Google Scholar 

  82. Winter, M. & Besenhard, J. O. Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta 45, 31–50 (1999).

    CAS  Google Scholar 

  83. Wu, H. & Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7, 414–429 (2012).

    CAS  Google Scholar 

  84. Yoshio, M. et al. Carbon-coated Si as a lithium-ion battery anode material. J. Electrochem. Soc. 149, A1598–A1603 (2002).

    CAS  Google Scholar 

  85. Johnson, C. S., Li, N., Lefief, C. & Thackeray, M. M. Anomalous capacity and cycling stability of xLi(2)MnO(3)center dot(1−x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50 degrees C. Electrochem. Commun. 9, 787–795 (2007).

    CAS  Google Scholar 

  86. Obrovac, M. N., Christensen, L., Le, D. B. & Dahn, J. R. Alloy design for lithium-ion battery anodes. J. Electrochem. Soc. 154, A849–A855 (2007).

    CAS  Google Scholar 

  87. Sandu, I., Moreau, P., Guyomard, D., Brousse, T. & Roué, L. Synthesis of nanosized Si particles via a mechanochemical solid–liquid reaction and application in Li-ion batteries. Solid State Ion. 178, 1297–1303 (2007).

    CAS  Google Scholar 

  88. Phan, V. P., Pecquenard, B. & Le Cras, F. High-performance all-solid-state cells fabricated with silicon electrodes. Adv. Funct. Mater. 22, 2580–2584 (2012).

    CAS  Google Scholar 

  89. Szczech, J. R. & Jin, S. Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 4, 56–72 (2011).

    CAS  Google Scholar 

  90. Liu, N. et al. a yolk-shell design for stabilized and scalable li-ion battery alloy anodes. Nano Lett. 12, 3315–3321 (2012).

    CAS  Google Scholar 

  91. Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotech. 3, 31–35 (2008).

    CAS  Google Scholar 

  92. Cui, L.-F., Ruffo, R., Chan, C. K., Peng, H. & Cui, Y. Crystalline-amorphous core–shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 9, 491–495 (2009).

    CAS  Google Scholar 

  93. Hertzberg, B., Alexeev, A. & Yushin, G. Deformations in Si–Li anodes upon electrochemical alloying in nano-confined space. J. Am. Chem. Soc. 132, 8548–8549 (2010).

    CAS  Google Scholar 

  94. Choi, N.-S., Yao, Y., Cui, Y. & Cho, J. One dimensional Si/Sn-based nanowires and nanotubes for lithium-ion energy storage materials. J. Mater. Chem. 21, 9825–9840 (2011).

    CAS  Google Scholar 

  95. Ma, H. et al. Nest-like silicon nanospheres for high-capacity lithium storage. Adv. Mater. 19, 4067–4070 (2007).

    CAS  Google Scholar 

  96. Magasinski, A. et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 9, 353–358 (2010).

    CAS  Google Scholar 

  97. Yin, J. et al. Micrometer-scale amorphous Si thin-film electrodes fabricated by electron-beam deposition for Li-ion batteries. J. Electrochem. Soc. 153, A472–A477 (2006).

    CAS  Google Scholar 

  98. Mazouzi, D., Lestriez, B., Roué, L. & Guyomard, D. Silicon composite electrode with high capacity and long cycle life. Electrochem. Solid State Lett. 12, A215–A218 (2009).

    CAS  Google Scholar 

  99. Chan, C. K., Patel, R. N., O'Connell, M. J., Korgel, B. A. & Cui, Y. Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano 4, 1443–1450 (2010).

    CAS  Google Scholar 

  100. Liu, N. et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotech. 9, 187–192 (2014).

    CAS  Google Scholar 

  101. Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy. Environ. Sci. 7, 513–537 (2014).

    CAS  Google Scholar 

  102. Cheng, X.-B. et al. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 3, 1500213 (2015).

    Google Scholar 

  103. Kim, J.-S., Kim, D. W., Jung, H. T. & Choi, J. W. Controlled lithium dendrite growth by a synergistic effect of multilayered graphene coating and an electrolyte additive. Chem. Mater. 27, 2780–2787 (2015).

    CAS  Google Scholar 

  104. Van Noorden, R. A better battery. Nature 507, 26–28 (2014).

    CAS  Google Scholar 

  105. Nazar, L. F., Cuisinier, M. & Pang, Q. Lithium-sulfur batteries. MRS Bull. 39, 436–442 (2014).

    CAS  Google Scholar 

  106. Manthiram, A., Fu, Y. Z. & Su, Y. S. Challenges and prospects of lithium–sulfur batteries. Acc. Chem. Res. 46, 1125–1134 (2013).

    CAS  Google Scholar 

  107. Yin, Y. X., Xin, S., Guo, Y. G. & Wan, L. J. Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 52, 13186–13200 (2013).

    CAS  Google Scholar 

  108. Zhang, B., Qin, X., Li, G. R. & Gao, X. P. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy. Environ. Sci. 3, 1531–1537 (2010).

    CAS  Google Scholar 

  109. Liang, C. D., Dudney, N. J. & Howe, J. Y. Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chem. Mater. 21, 4724–4730 (2009).

    CAS  Google Scholar 

  110. Ji, X. L., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500–506 (2009).

    CAS  Google Scholar 

  111. Seh, Z. W. et al. Sulphur–TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 4, 1331 (2013).

    Google Scholar 

  112. Song, M. K., Zhang, Y. G. & Cairns, E. J. A long-life, high-rate lithium/sulfur cell: a multifaceted approach to enhancing cell performance. Nano Lett. 13, 5891–5899 (2013).

    CAS  Google Scholar 

  113. Chen, R. J. et al. Graphene-based three-dimensional hierarchical sandwich-type architecture for high-performance Li/S batteries. Nano Lett. 13, 4642–4649 (2013).

    CAS  Google Scholar 

  114. Lu, J. et al. A lithium–oxygen battery based on lithium superoxide. Nature 529, 377–382 (2016).

    CAS  Google Scholar 

  115. Lu, J. et al. A nanostructured cathode architecture for low charge overpotential in lithium–oxygen batteries. Nat. Commun. 4, 2383 (2013).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy under Contract DE-AC0206CH11357 with the main support provided by the Vehicle Technologies Office, Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE). We also acknowledge support from the Chinese Electric Power Research Institute (CEPRI).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Pan, Larry A. Curtiss or Khalil Amine.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Chen, Z., Ma, Z. et al. The role of nanotechnology in the development of battery materials for electric vehicles. Nature Nanotech 11, 1031–1038 (2016). https://doi.org/10.1038/nnano.2016.207

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.207

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing