Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Developing a scalable artificial photosynthesis technology through nanomaterials by design

Subjects

Abstract

An artificial photosynthetic system that directly produces fuels from sunlight could provide an approach to scalable energy storage and a technology for the carbon-neutral production of high-energy-density transportation fuels. A variety of designs are currently being explored to create a viable artificial photosynthetic system, and the most technologically advanced systems are based on semiconducting photoelectrodes. Here, I discuss the development of an approach that is based on an architecture, first conceived around a decade ago, that combines arrays of semiconducting microwires with flexible polymeric membranes. I highlight the key steps that have been taken towards delivering a fully functional solar fuels generator, which have exploited advances in nanotechnology at all hierarchical levels of device construction, and include the discovery of earth-abundant electrocatalysts for fuel formation and materials for the stabilization of light absorbers. Finally, I consider the remaining scientific and engineering challenges facing the fulfilment of an artificial photosynthetic system that is simultaneously safe, robust, efficient and scalable.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of a microwire-based membrane-bound solar fuels generator.
Figure 2: Fabrication of Si microwire arrays.
Figure 3: A device made of dual membrane-embedded Si microwire arrays.
Figure 4: Schematic of a self-aligned microwire-based tandem water-splitting device.
Figure 5: Schematics of various fully integrated, intrinsically safe solar fuels generators.
Figure 6: Photoanode protection layers.

References

  1. Verne, J. The Mysterious Island (Pierre Jules-Hetzel, 1874).

    Google Scholar 

  2. Ciamician, G. The photochemistry of the future. Science 36, 385–394 (1912).

    Article  CAS  Google Scholar 

  3. Capra, F. You Can't Take It With You (Columbia Pictures, 1938).

    Google Scholar 

  4. Eisenberg, A. The answer is (artificially) blowing in the wind. The New York Times (21 May 2011).

  5. Regalado, A. Reinventing the leaf: artificial photosynthesis to create clean fuel. Scientific American (1 October 2010).

  6. Long, J. C. S. & John, M. California's Energy Future: The View to 2050 (California Council on Science and Technology, 2011).

    Google Scholar 

  7. Lewis, N. S. & Crabtree, G. Basic Research Needs for Solar Energy Utilization (United States Department of Energy, 2005).

    Google Scholar 

  8. Bard, A. J. & Fox, M. A. Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28, 141–145 (1995).

    Article  CAS  Google Scholar 

  9. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    Article  CAS  Google Scholar 

  10. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    Article  CAS  Google Scholar 

  11. Lewis, N. S. Research opportunities to advance solar energy utilization. Science 351, http://dx.doi.org/10.1126/science.aad1920 (2016).

    Article  CAS  Google Scholar 

  12. Shapiro, H. T. Overview and Summary of America's Energy Future: Technology and Transformation (National Academies Press, 2010). Explores technology pathways for transforming energy supply and use in the United States.

    Google Scholar 

  13. Wasielewski, M. R. Energy, charge, and spin transport in molecules and self-assembled nanostructures inspired by photosynthesis. J. Org. Chem. 71, 5051–5066 (2006).

    Article  CAS  Google Scholar 

  14. Wasielewski, M. R. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. Acc. Chem. Res. 42, 1910–1921 (2009).

    Article  CAS  Google Scholar 

  15. Duan, L. et al. A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II. Nat. Chem. 4, 418–423 (2012).

    Article  CAS  Google Scholar 

  16. Alibabaei, L., Sherman, B. D., Norris, M. R., Brennaman, M. K. & Meyer, T. J. Visible photoelectrochemical water splitting into H2 and O2 in a dye-sensitized photoelectrosynthesis cell. Proc. Natl Acad. Sci. USA 112, 5899–5902 (2015).

    Article  CAS  Google Scholar 

  17. Concepcion, J. J., House, R. L., Papanikolas, J. M. & Meyer, T. J. Chemical approaches to artificial photosynthesis. Proc. Natl Acad. Sci. USA 109, 15560–15564 (2012).

    Article  CAS  Google Scholar 

  18. Swierk, J. R. et al. Metal-free organic sensitizers for use in water-splitting dye-sensitized photoelectrochemical cells. Proc. Natl Acad. Sci. USA 112, 1681–1686 (2015).

    Article  CAS  Google Scholar 

  19. Han, Z. & Eisenberg, R. Fuel from water: the photochemical generation of hydrogen from water. Acc. Chem. Res. 47, 2537–2544 (2014).

    Article  CAS  Google Scholar 

  20. Han, Z., Qiu, F., Eisenberg, R., Holland, P. L. & Krauss, T. D. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 338, 1321–1324 (2012).

    Article  CAS  Google Scholar 

  21. Maeda, K. & Domen, K. Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1, 2655–2661 (2010).

    Article  CAS  Google Scholar 

  22. Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009).

    Article  CAS  Google Scholar 

  23. Tan, M. X. et al. in Progress in Inorganic Chemistry (ed. Karlin, K. D.) 21–144 (John Wiley & Sons, 1994).

    Google Scholar 

  24. Gerischer, H. Kinetics of oxidation–reduction reactions on metals and semiconductors. I. General remarks on the electron transition between a solid body and a reduction-oxidation electrolyte. Z. Phys. Chem. 26, 223–247 (1960).

    Article  CAS  Google Scholar 

  25. Gerischer, H. Kinetics of oxidation–reduction reactions on metals and semiconductors. III. General remarks on the electron transition between a solid body and a reduction-oxidation electrolyte. Z. Phys. Chem. 27, 48–79 (1961).

    Article  CAS  Google Scholar 

  26. Memming, R. Semiconductor Electrochemistry (Wiley-VCH, 2000).

    Book  Google Scholar 

  27. Spurgeon, J. M. & Lewis, N. S. Proton exchange membrane electrolysis sustained by water vapor. Energy Environ. Sci. 4, 2993–2998 (2011).

    Article  CAS  Google Scholar 

  28. Xiang, C., Chen, Y. & Lewis, N. S. Modeling an integrated photoelectrolysis system sustained by water vapor. Energy Environ. Sci. 6, 3713–3721 (2013).

    Article  CAS  Google Scholar 

  29. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). First report of unassisted, light-driven water splitting by a semiconducting electrode.

    Article  CAS  Google Scholar 

  30. Wrighton, M. S., Wolczanski, P. T. & Ellis, A. B. Photoelectrolysis of water by irradiation of platinized n-type semiconducting metal oxides. J. Solid State Chem. 22, 17–29 (1977).

    Article  CAS  Google Scholar 

  31. Wrighton, M. S. et al. Strontium-titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential. J. Am. Chem. Soc. 98, 2774–2779 (1976).

    Article  CAS  Google Scholar 

  32. Rocheleau, R. E. & Miller, E. L. Photoelectrochemical production of hydrogen: engineering loss analysis. Int. J. Hydrogen Energy 22, 771–782 (1997).

    Article  CAS  Google Scholar 

  33. Luttmer, J. D. & Trachtenberg, I. Performance predictions for solar-chemical converters based on photoelectrochemical IV curves. J. Electrochem. Soc. 132, 1312–1315 (1985).

    Article  CAS  Google Scholar 

  34. Bolton, J. R., Strickler, S. J. & Connolly, J. S. Limiting and realizable efficiencies of solar photolysis of water. Nature 316, 495–500 (1985). For water splitting, this analysis estimates practical efficiencies of 10% for single-absorber systems and 16% for dual-absorber systems.

    Article  CAS  Google Scholar 

  35. Singh, M. R., Papadantonakis, K. M., Xiang, C. X. & Lewis, N. S. An electrochemical engineering assessment of the operational conditions and constraints for solar-driven water-splitting systems at near-neutral pH. Energy Environ. Sci. 8, 2760–2767 (2015).

    Article  CAS  Google Scholar 

  36. Jin, J. et al. An experimental and modeling/simulation-based evaluation of the efficiency and operational performance characteristics of an integrated, membrane-free, neutral pH solar-driven water-splitting system. Energy Environ. Sci. 7, 3371–3380 (2014).

    Article  CAS  Google Scholar 

  37. Hernandez-Pagan, E. A. et al. Resistance and polarization losses in aqueous buffer-membrane electrolytes for water-splitting photoelectrochemical cells. Energy Environ. Sci. 5, 7582–7589 (2012).

    Article  CAS  Google Scholar 

  38. Xiang, C., Papadantonakis, K. M. & Lewis, N. S. Principles and implementations of electrolysis. Mater. Horiz. 3, 169–173 (2016).

    Article  CAS  Google Scholar 

  39. Licht, S. et al. Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis. J. Phys. Chem. B 104, 8920–8924 (2000).

    Article  CAS  Google Scholar 

  40. Khaselev, O. & Turner, J. A. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998).

    Article  CAS  Google Scholar 

  41. Khaselev, O., Bansal, A. & Turner, J. A. High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production. Int. J. Hydrogen Energy 26, 127–132 (2001).

    Article  CAS  Google Scholar 

  42. Appleby, A. J. Photocell device for evolving hydrogen and oxygen from water. US patent 4643817 (1987).

    Google Scholar 

  43. Appleby, A. J. et al. An amorphous silicon-based one-unit photovoltaic electrolyzer. Energy 10, 871–876 (1985).

    Article  CAS  Google Scholar 

  44. Rocheleau, R. E., Miller, E. L. & Misra, A. High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes. Energy Fuels 12, 3–10 (1998).

    Article  CAS  Google Scholar 

  45. Yamada, Y. et al. One chip photovoltaic water electrolysis device. Int. J. Hydrogen Energy 28, 1167–1169 (2003).

    Article  CAS  Google Scholar 

  46. Licht, S. et al. Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting. Int. J. Hydrogen Energy 26, 653–659 (2001).

    Article  CAS  Google Scholar 

  47. Kocha, S. S., Montgomery, D., Peterson, M. W. & Turner, J. A. Photoelectrochemical decomposition of water utilizing monolithic tandem cells. Sol. Energy Mater. Sol. Cells 52, 389–397 (1998).

    Article  CAS  Google Scholar 

  48. Cox, C. R., Lee, J. Z., Nocera, D. G. & Buonassisi, T. Ten-percent solar-to-fuel conversion with nonprecious materials. Proc. Natl Acad. Sci. USA 111, 14057–14061 (2014).

    Article  CAS  Google Scholar 

  49. Reece, S. Y. et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334, 645–648 (2011).

    Article  CAS  Google Scholar 

  50. Abdi, F. F. et al. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 4, 2195 (2013).

    Article  CAS  Google Scholar 

  51. Minguzzi, A., Fan, F.-R. F., Vertova, A., Rondinini, S. & Bard, A. J. Dynamic potential–pH diagrams application to electrocatalysts for water oxidation. Chem. Sci. 3, 217–229 (2012).

    Article  CAS  Google Scholar 

  52. Newman, J. Scaling with Ohm's law: wired vs. wireless photoelectrochemical cells. J. Electrochem. Soc. 160, F309–F311 (2013).

    Article  CAS  Google Scholar 

  53. Bockris, J. O. M., Dandapani, B., Cocke, D. & Ghoroghchian, J. On the splitting of water. Int. J. Hydrogen Energy 10, 179–201 (1985).

    Article  CAS  Google Scholar 

  54. Maiolo, J. R., Atwater, H. A. & Lewis, N. S. Macroporous silicon as a model for silicon wire array solar cells. J. Phys. Chem. C 112, 6194–6201 (2008).

    Article  CAS  Google Scholar 

  55. Kayes, B. M., Atwater, H. A. & Lewis, N. S. Comparison of the device physics principles of planar and radial p–n junction nanorod solar cells. J. Appl. Phys. 97, 114302 (2005).

    Article  CAS  Google Scholar 

  56. Maiolo, J. R. et al. High aspect ratio silicon wire array photoelectrochemical cells. J. Am. Chem. Soc. 129, 12346–12347 (2007).

    Article  CAS  Google Scholar 

  57. Kayes, B. M. et al. Growth of vertically aligned Si wire arrays over large areas (>1 cm2) with Au and Cu catalysts. Appl. Phys. Lett. 91, 103110 (2007). In this work, Si microwires are grown using vapour–liquid–solid techniques employing either Au or Cu catalysts. Au is deleterious to the performance of Si, whereas Cu is less so and can be removed via gettering.

    Article  CAS  Google Scholar 

  58. Plass, K. E. et al. Flexible polymer-embedded Si wire arrays. Adv. Mater. 21, 325–328 (2009).

    Article  CAS  Google Scholar 

  59. Kelzenberg, M. D. et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 9, 239–244 (2010).

    Article  CAS  Google Scholar 

  60. Kelzenberg, M. D. et al. High-performance Si microwire photovoltaics. Energy Environ. Sci. 4, 866–871 (2011).

    Article  CAS  Google Scholar 

  61. Putnam, M. C. et al. Si microwire-array solar cells. Energy Environ. Sci. 3, 1037–1041 (2010).

    Article  Google Scholar 

  62. Audesirk, H. A., Warren, E. L., Ku, J. & Lewis, N. S. Ordered silicon microwire arrays grown from substrates patterned using imprint lithography and electrodeposition. ACS Appl. Mater. Interfaces 7, 1396–1400 (2015).

    Article  CAS  Google Scholar 

  63. Boettcher, S. W. et al. Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes. Science 327, 185–187 (2010).

    Article  CAS  Google Scholar 

  64. Coridan, R. H. et al. Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation. Energy Environ. Sci. 8, 2886–2901 (2015). The ideal regenerative cell efficiency is a half-cell performance metric, appropriate when evaluating either a photoanode or photocathode that is not capable of driving a reaction unassisted.

    Article  CAS  Google Scholar 

  65. Boettcher, S. W. et al. Photoelectrochemical hydrogen evolution using Si microwire arrays. J. Am. Chem. Soc. 133, 1216–1219 (2011).

    Article  CAS  Google Scholar 

  66. Spurgeon, J. M., Walter, M. G., Zhou, J., Kohl, P. A. & Lewis, N. S. Electrical conductivity, ionic conductivity, optical absorption, and gas separation properties of ionically conductive polymer membranes embedded with Si microwire arrays. Energy Environ. Sci. 4, 1772–1780 (2011).

    Article  CAS  Google Scholar 

  67. Haussener, S. et al. Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems. Energy Environ. Sci. 5, 9922–9935 (2012).

    Article  CAS  Google Scholar 

  68. Ardo, S., Park, S. H., Warren, E. L. & Lewis, N. S. Unassisted solar-driven photoelectrosynthetic HI splitting using membrane-embedded Si microwire arrays. Energy Environ. Sci. 8, 1484–1492 (2015).

    Article  CAS  Google Scholar 

  69. Yahyaie, I. et al. Characterization of the electrical properties of individual p-Si microwire/polymer/n-Si microwire assemblies. J. Phys. Chem. C 115, 24945–24950 (2011).

    Article  CAS  Google Scholar 

  70. Cho, C. J., O'Leary, L., Lewis, N. S. & Greer, J. R. In situ nanomechanical measurements of interfacial strength in membrane-embedded chemically functionalized Si microwires for flexible solar cells. Nano Lett. 12, 3296–3301 (2012).

    Article  CAS  Google Scholar 

  71. Gallant, B. M., Gu, X. W., Chen, D. Z., Greer, J. R. & Lewis, N. S. Tailoring of interfacial mechanical shear strength by surface chemical modification of silicon microwires embedded in Nafion membranes. ACS Nano 9, 5143–5153 (2015).

    Article  CAS  Google Scholar 

  72. McDonald, M. B., Ardo, S., Lewis, N. S. & Freund, M. S. Use of bipolar membranes for maintaining steady-state pH gradients in membrane-supported, solar-driven water splitting. ChemSusChem 7, 3021–3027 (2014).

    Article  CAS  Google Scholar 

  73. Vargas-Barbosa, N. M., Geise, G. M., Hickner, M. A. & Mallouk, T. E. Assessing the utility of bipolar membranes for use in photoelectrochemical water-splitting cells. ChemSusChem 7, 3017–3020 (2014).

    Article  CAS  Google Scholar 

  74. McDonald, M. B. & Freund, M. S. Graphene oxide as a water dissociation catalyst in the bipolar membrane interfacial layer. ACS Appl. Mater. Interfaces 6, 13790–13797 (2014).

    Article  CAS  Google Scholar 

  75. Shaner, M. R. et al. Photoelectrochemistry of core–shell tandem junction n–p+-Si/n-WO3 microwire array photoelectrodes. Energy Environ. Sci. 7, 779–790 (2014).

    Article  CAS  Google Scholar 

  76. Liu, C., Tang, J. Y., Chen, H. M., Liu, B. & Yang, P. D. A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. Nano Lett. 13, 2989–2992 (2013).

    Article  CAS  Google Scholar 

  77. Chen, Y., Sun, K., Audesirk, H., Xiang, C. & Lewis, N. S. A quantitative analysis of the efficiency of solar-driven water-splitting device designs based on tandem photoabsorbers patterned with islands of metallic electrocatalysts. Energy Environ. Sci. 8, 1736–1747 (2015).

    Article  CAS  Google Scholar 

  78. McCrory, C. C. L. et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015).

    Article  CAS  Google Scholar 

  79. Liu, P. & Rodriguez, J. A. Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: the importance of ensemble effect. J. Am. Chem. Soc. 127, 14871–14878 (2005).

    Article  CAS  Google Scholar 

  80. Popczun, E. J. et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135, 9267–9270 (2013).

    Article  CAS  Google Scholar 

  81. Popczun, E. J., Read, C. G., Roske, C. W., Lewis, N. S. & Schaak, R. E. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem. Int. Ed. 126, 5531–5534 (2014).

    Article  Google Scholar 

  82. McEnaney, J. M. et al. Amorphous molybdenum phosphide nanoparticles for electrocatalytic hydrogen evolution. Chem. Mater. 26, 4826–4831 (2014).

    Article  CAS  Google Scholar 

  83. McEnaney, J. M. et al. Electrocatalytic hydrogen evolution using amorphous tungsten phosphide nanoparticles. Chem. Commun. 50, 11026–11028 (2014).

    Article  CAS  Google Scholar 

  84. Callejas, J. F. et al. Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles. ACS Nano 8, 11101–11107 (2014).

    Article  CAS  Google Scholar 

  85. Saadi, F. H. et al. CoP as an acid-stable active electrocatalyst for the hydrogen-evolution reaction: electrochemical synthesis, interfacial characterization and performance evaluation. J. Phys. Chem. C 118, 29294–29300 (2014).

    Article  CAS  Google Scholar 

  86. Caban-Acevedo, M. et al. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 14, 1245–1251 (2015).

    Article  CAS  Google Scholar 

  87. Roske, C. W. et al. Comparison of the performance of CoP-coated and Pt-coated radial junction n+p-silicon microwire-array photocathodes for the sunlight-driven reduction of water to H2(g). J. Phys. Chem. Lett. 6, 1679–1683 (2015).

    Article  CAS  Google Scholar 

  88. Warren, E. L., McKone, J. R., Atwater, H. A., Gray, H. B. & Lewis, N. S. Hydrogen-evolution characteristics of Ni–Mo-coated, radial junction, n+p-silicon microwire array photocathodes. Energy Environ. Sci. 5, 9653–9661 (2012).

    Article  CAS  Google Scholar 

  89. Shaner, M. R., McKone, J. R., Gray, H. B. & Lewis, N. S. Functional integration of Ni–Mo electrocatalysts with Si microwire array photocathodes to simultaneously achieve high fill factors and light-limited photocurrent densities for solar-driven hydrogen evolution. Energy Environ. Sci. 8, 2977–2984 (2015).

    Article  CAS  Google Scholar 

  90. Ding, Q. et al. Designing efficient solar-driven hydrogen evolution photocathodes using semitransparent MoQxCly (Q = S, Se) catalysts on Si micropyramids. Adv. Mater. 27, 6511–6518 (2015).

    Article  CAS  Google Scholar 

  91. Aspnes, D. E. & Heller, A. Photo-electrochemical hydrogen evolution and water-photolyzing semiconductor suspensions — properties of platinum group metal catalyst semiconductor contacts in air and in hydrogen. J. Phys. Chem. 87, 4919–4929 (1983).

    Article  CAS  Google Scholar 

  92. Walczak, K. et al. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system. ChemSusChem 8, 544–551 (2015).

    Article  CAS  Google Scholar 

  93. Chen, Y., Xiang, C., Hu, S. & Lewis, N. S. Modeling the performance of an integrated photoelectrolysis system with 10× solar concentrators. J. Electrochem. Soc. 161, F1101–F1110 (2014).

    Article  CAS  Google Scholar 

  94. Hu, S., Xiang, C., Haussener, S., Berger, A. D. & Lewis, N. S. An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 6, 2984–2993 (2013). Pairing a material with a 1.6–18 eV bandgap with Si in a tandem structure gives a theoretical solar-to-hydrogen efficiency limit of 25–30% if the semiconductors are near the Shockley–Queisser efficiency limit and state-of-the-art catalysts are used.

    Article  CAS  Google Scholar 

  95. Haussener, S., Hu, S., Xiang, C., Weber, A. Z. & Lewis, N. S. Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 6, 3605–3618 (2013).

    Article  CAS  Google Scholar 

  96. Chen, Y., Hu, S., Xiang, C. & Lewis, N. S. A sensitivity analysis to assess the relative importance of improvements in electrocatalysts, light absorbers, and system geometry on the efficiency of solar-fuels generators. Energy Environ. Sci. 8, 876–886 (2015).

    Article  Google Scholar 

  97. Kline, G., Kam, K. K., Canfield, D. & Parkinson, B. A. Efficient and stable photoelectrochemical cells constructed with WSe2 and MoSe2 photoanodes. Solar Energy Mater. 4, 301–308 (1981).

    Article  CAS  Google Scholar 

  98. Fan, F.-R. F., White, H. S., Wheeler, B. L. & Bard, A. J. Semiconductor electrodes. 31. Photoelectrochemistry and photovoltaic systems with n- and p-type WSe2 in aqueous solution. J. Am. Chem. Soc. 102, 5142–5148 (1980).

    Article  CAS  Google Scholar 

  99. Kautek, W. & Gerischer, H. The photoelectrochemistry of the aqueous iodide/iodine redox system at n-type MoSe2 electrodes. Electrochim. Acta 26, 1771–1778 (1981).

    Article  CAS  Google Scholar 

  100. Kam, K. K. & Parkinson, B. A. Detailed photocurrent spectroscopy of the semiconducting group VI transition metal dichalcogenides. J. Phys. Chem. 86, 463–467 (1982).

    Article  CAS  Google Scholar 

  101. Levy-Clement, C., Heller, A., Bonner, W. A. & Parkinson, B. A. Spontaneous photoelectrolysis of HBr and HI. J. Electrochem. Soc. 129, 1701–1705 (1982).

    Article  CAS  Google Scholar 

  102. Tenne, R. & Wold, A. Passivation of recombination centers in n-WSe2 yields high efficiency (>14%) photoelectrochemical cell. Appl. Phys. Lett. 47, 707–709 (1985).

    Article  CAS  Google Scholar 

  103. Kubiak, C. P., Schneemeyer, L. F. & Wrighton, M. S. Visible light driven generation of chlorine and bromine. Photooxidation of chloride and bromide in aqueous solution at illuminated n-type semiconducting molybdenum diselenide and molybdenum disulfide electrodes. J. Am. Chem. Soc. 102, 6898–6900 (1980).

    Article  CAS  Google Scholar 

  104. McKone, J. R., Pieterick, A. P., Gray, H. B. & Lewis, N. S. Hydrogen evolution from Pt/Ru-coated p-type WSe2 photocathodes. J. Am. Chem. Soc. 135, 223–231 (2013).

    Article  CAS  Google Scholar 

  105. Lewerenz, H. J., Ferris, S. D., Doherty, C. J. & Leamy, H. J. Charge collection microscopy on p-WSe2: recombination sites and minority carrier diffusion length. J. Electrochem. Soc. 129, 418–423 (1982).

    Article  CAS  Google Scholar 

  106. Parkinson, B. A., Furtak, T. E., Canfield, D., Kam, K.-K. & Kline, G. Evaluation and reduction of efficiency losses at tungsten diselenide photoanodes. Faraday Discuss. 70, 233–245 (1980).

    Article  Google Scholar 

  107. Schoppel, H. R. & Gerischer, H. Cathodic reduction of Cu–I oxide electrodes as example for reduction mechanism of semiconductor crystal. Ber. Bunsen-Ges. Phys. Chem. 75, 1237–1239 (1971).

    Google Scholar 

  108. Xiang, C. X. et al. 820 mV open-circuit voltages from Cu2O/CH3CN junctions. Energy Environ. Sci. 4, 1311–1318 (2011).

    Article  CAS  Google Scholar 

  109. Gerischer, H. On the stability of semiconductor electrodes against photodecomposition. J. Electroanal. Chem. Electrochem. 82, 133–143 (1977).

    Article  CAS  Google Scholar 

  110. Chen, S. & Wang, L.-W. Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chem. Mater. 24, 3659–3666 (2012).

    Article  CAS  Google Scholar 

  111. Berglund, S. P., Flaherty, D. W., Hahn, N. T., Bard, A. J. & Mullins, C. B. Photoelectrochemical oxidation of water using nanostructured BiVO4 films. J. Phys. Chem. C 115, 3794–3802 (2011).

    Article  CAS  Google Scholar 

  112. Seabold, J. A. & Choi, K. S. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J. Am. Chem. Soc. 134, 2186–2192 (2012).

    Article  CAS  Google Scholar 

  113. Abdi, F. F. & van de Krol, R. Nature and light dependence of bulk recombination in Co-Pi-catalyzed BiVO4 photoanodes. J. Phys. Chem. C 116, 9398–9404 (2012).

    Article  CAS  Google Scholar 

  114. Seabold, J. A. & Choi, K. S. Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode. Chem. Mater. 23, 1105–1112 (2011).

    Article  CAS  Google Scholar 

  115. Coridan, R. H., Arpin, K. A., Brunschwig, B. S., Braun, P. V. & Lewis, N. S. Photoelectrochemical behavior of hierarchically structured Si/WO3 core–shell tandem photoanodes. Nano Lett. 14, 2310–2317 (2014).

    Article  CAS  Google Scholar 

  116. Klahr, B., Gimenez, S., Fabregat-Santiago, F., Bisquert, J. & Hamann, T. W. Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes. Energy Environ. Sci. 5, 7626–7636 (2012).

    Article  CAS  Google Scholar 

  117. Klahr, B. M. & Hamann, T. W. Current and voltage limiting processes in thin film hematite electrodes. J. Phys. Chem. C 115, 8393–8399 (2011).

    Article  CAS  Google Scholar 

  118. Lopes, T. et al. Hematite photoelectrodes for water splitting: evaluation of the role of film thickness by impedance spectroscopy. Phys. Chem. Chem. Phys. 16, 16515–16523 (2014).

    Article  CAS  Google Scholar 

  119. Morrison, S. R. The Chemical Physics of Surfaces (Springer, 1990).

    Book  Google Scholar 

  120. Hu, S. et al. Thin-film materials for the protection of semiconducting photoelectrodes in solar-fuels generators. J. Phys. Chem. C 119, 24201–24228 (2015).

    Article  CAS  Google Scholar 

  121. Chen, Y. W. et al. Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nat. Mater. 10, 539–544 (2011).

    Article  CAS  Google Scholar 

  122. Scheuermann, A. G. et al. Design principles for maximizing photovoltage in metal-oxide-protected water-splitting photoanodes. Nat. Mater. 15, 99–105 (2016).

    Article  CAS  Google Scholar 

  123. Hu, S. et al. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344, 1005–1009 (2014). Amorphous TiO 2 coatings up to 140 nm thick conduct anodic current, but only when Ni is deposited at the TiO 2 /electrolyte interface.

    Article  CAS  Google Scholar 

  124. Lichterman, M. F. et al. Stabilization of n-cadmium telluride photoanodes for water oxidation to O2(g) in aqueous alkaline electrolytes using amorphous TiO2 films formed by atomic-layer deposition. Energy Environ. Sci. 7, 3334–3337 (2014).

    Article  CAS  Google Scholar 

  125. McDowell, M. T. et al. The influence of structure and processing on the behavior of TiO2 protective layers for stabilization of n-Si/TiO2/Ni photoanodes for water oxidation. ACS Appl. Mater. Interfaces 7, 15189–15199 (2015).

    Article  CAS  Google Scholar 

  126. McDowell, M. T. et al. Improved stability of polycrystalline bismuth vanadate photoanodes by use of dual-layer thin TiO2/Ni coatings. J. Phys. Chem. C 118, 19618–19624 (2014).

    Article  CAS  Google Scholar 

  127. Shaner, M. R., Hu, S., Sun, K. & Lewis, N. S. Stabilization of Si microwire arrays for solar-driven H2O oxidation to O2(g) in 1.0 M KOH(aq) using conformal coatings of amorphous TiO2 . Energy Environ. Sci. 8, 203–207 (2015).

    Article  CAS  Google Scholar 

  128. Hu, S. et al. Electrical, photoelectrochemical and photoelectron spectroscopic investigation of the interfacial transport and energetics of amorphous TiO2/Si heterojunctions. J. Phys. Chem. C 120, 3117–3129 (2015).

    Article  CAS  Google Scholar 

  129. Mei, B. et al. Crystalline TiO2: a generic and effective electron-conducting protection layer for photoanodes and -cathodes. J. Phys. Chem. C 119, 15019–15027 (2015).

    Article  CAS  Google Scholar 

  130. Sun, K. et al. Stable solar-driven water oxidation to O2(g) by Ni-oxide-coated silicon photoanodes. J. Phys. Chem. Lett. 6, 592–598 (2015).

    Article  CAS  Google Scholar 

  131. Mei, B. et al. Iron-treated NiO as a highly transparent p-type protection layer for efficient Si-based photoanodes. J. Phys. Chem. Lett. 5, 3456–3461 (2014).

    Article  CAS  Google Scholar 

  132. Sun, K. et al. Sputtered NiOx films for stabilization of p+n-InP photoanodes for solar-driven water oxidation. Adv. Energy Mater. 5, 1402276 (2015).

    Article  CAS  Google Scholar 

  133. Sun, K. et al. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films. Proc. Natl Acad. Sci. USA 112, 3612–3617 (2015).

    CAS  Google Scholar 

  134. Lichterman, M. F. et al. Direct observation of the energetics at a semiconductor/liquid junction by operando X-ray photoelectron spectroscopy. Energy Environ. Sci. 8, 2409–2416 (2015).

    Article  CAS  Google Scholar 

  135. Verlage, E. et al. A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable Earth-abundant electrocatalysts in conjunction with tandem III–V light absorbers protected by amorphous TiO2 films. Energy Environ. Sci. 8, 3166–3172 (2015).

    Article  CAS  Google Scholar 

  136. Zhou, X. et al. Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide. Energy Environ. Sci. 8, 2644–2649 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work described herein was enabled by support from the National Science Foundation Center for Chemical Innovation, the Department of Energy Office of Basic Energy Sciences, the Air Force Office of Scientific Research, the Department of Energy through the Joint Center for Artificial Photosynthesis, and the Gordon and Betty Moore Foundation, as acknowledged in the individual publications referenced herein, as well as for partial salary support for N.S.L. that enabled the preparation of this manuscript. M. McDowell and K. Papadantonakis are acknowledged for assistance in preparation of this manuscript. A special acknowledgment is extended to the enthusiastic, talented and dedicated cohort of graduate students, post-doctoral fellows, collaborators and colleagues for their extraordinary, enabling contributions to this research effort, as acknowledged in the publications described and referenced herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan S. Lewis.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewis, N. Developing a scalable artificial photosynthesis technology through nanomaterials by design. Nature Nanotech 11, 1010–1019 (2016). https://doi.org/10.1038/nnano.2016.194

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.194

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research