Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Shape changing thin films powered by DNA hybridization


Active materials that respond to physical1,2,3 and chemical4,5,6 stimuli can be used to build dynamic micromachines that lie at the interface between biological systems and engineered devices7,8. In principle, the specific hybridization of DNA can be used to form a library of independent, chemically driven actuators for use in such microrobotic applications and could lead to device capabilities that are not possible with polymer- or metal-layer-based approaches. Here, we report shape changing films9 that are powered by DNA strand exchange reactions with two different domains that can respond to distinct chemical signals. The films are formed from DNA-grafted gold nanoparticles10,11 using a layer-by-layer deposition process. Films consisting of an active and a passive layer show rapid, reversible curling in response to stimulus DNA strands added to solution. Films consisting of two independently addressable active layers display a complex suite of repeatable transformations, involving eight mechanochemical states and incorporating self-righting behaviour.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Shape changing DNA–GNP films are fabricated via layer-by-layer deposition using a PDMS gasket.
Figure 2: Strand exchange reactions enable reversible DNA–GNP swelling.
Figure 3: Active–passive DNA–GNP films undergo sheet-to-tube shape transitions.
Figure 4: Dual-addressable DNA–GNP films explore a 2D configuration space.
Figure 5: Double actuation of dual-addressable DNA–GNP films accesses unique shape states.


  1. 1

    Na, J.-H. et al. Programming reversibly self-folding origami with micropatterned photo-crosslinkable polymer trilayers. Adv. Mater. 27, 79–85 (2015).

    CAS  Article  Google Scholar 

  2. 2

    Wang, E., Desai, M. S. & Lee, S.-W. Light-controlled graphene–elastin composite hydrogel actuators. Nano Lett. 13, 2826–2830 (2013).

    CAS  Article  Google Scholar 

  3. 3

    Feinberg, A. W. et al. Muscular thin films for building actuators and powering devices. Science 317, 1366–1370 (2007).

    CAS  Article  Google Scholar 

  4. 4

    Shim, T. S., Kim, S.-H., Heo, C.-J., Jeon, H. C. & Yang, S.-M. Controlled origami folding of hydrogel bilayers with sustained reversibility for robust microcarriers. Angew. Chem. Int. Ed. 51, 1420–1423 (2012).

    CAS  Article  Google Scholar 

  5. 5

    Bassik, N. et al. Enzymatically triggered actuation of miniaturized tools. J. Am. Chem. Soc. 132, 16314–16317 (2010).

    CAS  Article  Google Scholar 

  6. 6

    Palleau, E., Morales, D., Dickey, M. D. & Velev, O. D. Reversible patterning and actuation of hydrogels by electrically assisted ionoprinting. Nature Commun. 4, 2257 (2013).

    Article  Google Scholar 

  7. 7

    Kim, S., Laschi, C. & Trimmer, B. Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31, 287–294 (2013).

    CAS  Article  Google Scholar 

  8. 8

    Nawroth, J. C. et al. A tissue-engineered jellyfish with biomimetic propulsion. Nat. Biotechnol. 30, 792–797 (2012).

    CAS  Article  Google Scholar 

  9. 9

    Estephan, Z. G., Qian, Z., Lee, D., Crocker, J. C. & Park, S. J. Responsive multidomain free-standing films of gold nanoparticles assembled by DNA-directed layer-by-layer approach. Nano Lett. 13, 4449–4455 (2013).

    CAS  Article  Google Scholar 

  10. 10

    Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    CAS  Article  Google Scholar 

  11. 11

    Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996).

    CAS  Article  Google Scholar 

  12. 12

    Storhoff, J. J., Elghanian, R., Mucic, R. C., Mirkin, C. A. & Letsinger, R. L. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 120, 1959–1964 (1998).

    CAS  Article  Google Scholar 

  13. 13

    Noh, H. et al. 50 nm DNA nanoarrays generated from uniform oligonucleotide films. ACS Nano 3, 2376–2382 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Kannan, B., Kulkarni, R. P. & Majumdar, A. DNA-based programmed assembly of gold nanoparticles on lithographic patterns with extraordinary specificity. Nano Lett. 4, 1521–1524 (2004).

    CAS  Article  Google Scholar 

  15. 15

    Tison, C. K. & Milam, V. T. Reversing DNA-mediated adhesion at a fixed temperature. Langmuir 23, 9728–9736 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Tison, C. K. & Milam, V. T. Programming the kinetics and extent of colloidal disassembly using a DNA trigger. Soft Matter 6, 4446–4453 (2010).

    CAS  Article  Google Scholar 

  17. 17

    Baker, B. A., Mahmoudabadi, G. & Milam, V. T. Strand displacement in DNA-based materials systems. Soft Matter 9, 11160–11172 (2013).

    CAS  Article  Google Scholar 

  18. 18

    McGinley, J. T., Jenkins, I., Sinno, T. & Crocker, J. C. Assembling colloidal clusters using crystalline templates and reprogrammable DNA interactions. Soft Matter 9, 9119–9128 (2013).

    CAS  Article  Google Scholar 

  19. 19

    Rogers, W. B. & Manoharan, V. N. Programming colloidal phase transitions with DNA strand displacement. Science 347, 639–642 (2015).

    CAS  Article  Google Scholar 

  20. 20

    Maye, M. M., Kumara, M. T., Nykypanchuk, D., Sherman, W. B. & Gang, O. Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands. Nature 5, 116–120 (2010).

    CAS  Google Scholar 

  21. 21

    Zhang, Y. et al. Selective transformations between nanoparticle superlattices via the reprogramming of DNA-mediated interactions. Nat. Mater. 14, 840–847 (2015).

    CAS  Article  Google Scholar 

  22. 22

    Kim, Y., Macfarlane, R. J., Jones, M. R. & Mirkin, C. A. Transmutable nanoparticles with reconfigurable surface ligands. Science 351, 579–582 (2016).

    CAS  Article  Google Scholar 

  23. 23

    Sebba, D. S., Mock, J. J., Smith, D. R., Labean, T. H. & Lazarides, A. A. Reconfigurable core–satellite nanoassemblies as molecularly-driven plasmonic switches. Nano Lett. 8, 1803–1808 (2008).

    CAS  Article  Google Scholar 

  24. 24

    Yurke, B., Turberfield, A. J., Mills, A. P. Jr, Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    CAS  Article  Google Scholar 

  25. 25

    Liu, L., Jiang, S., Sun, Y. & Agarwal, S. Giving direction to motion and surface with ultra-fast speed using oriented hydrogel fibers. Adv. Funct. Mater. 26, 1021–1027 (2015).

    Article  Google Scholar 

  26. 26

    Chen, X. J. et al. Self-assembled hybrid structures of DNA block-copolymers and nanoparticles with enhanced DNA binding properties. Small 6, 2256–2260 (2010).

    CAS  Article  Google Scholar 

  27. 27

    Mitchell, G. P., Mirkin, C. A. & Letsinger, R. L. Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc. 121, 8122–8123 (1999).

    CAS  Article  Google Scholar 

  28. 28

    Murakami, Y. & Maeda, M. DNA-responsive hydrogels that can shrink or swell. Biomacromolecules 6, 2927–2929 (2005).

    CAS  Article  Google Scholar 

  29. 29

    Turkevich, J., Stevenson, P. C. & Hillier, J. The formation of colloidal gold. J. Phys. Chem. 57, 670–673 (1953).

    CAS  Article  Google Scholar 

  30. 30

    Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 241, 20–22 (1973).

    CAS  Google Scholar 

  31. 31

    Liu, X., Atwater, M., Wang, J. & Huo, Q. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf. B 58, 3–7 (2007).

    CAS  Article  Google Scholar 

Download references


This work was supported by the NSF under an MRSEC seed award (DMR11-20901). S.-J.P. acknowledges the financial support from a National Research Foundation of Korea grant, funded by the Korea government (MSIP) (NRF-2015R1A2A2A01003528). T.S.S. acknowledges the financial support from a National Research Foundation of Korea grant, funded by the Korea government (MSIP) (2016R1C1B2016089).

Author information




T.S.S., D.L., S.-J.P. and J.C.C. designed the study. T.S.S., Z.G.E., D.C. and J.C.C. designed the DNA sequence library. T.S.S., Z.Q. and S.Y.L. prepared the DNA–GNPs and other materials. T.S.S. and J.H.P. set up and performed the ellipsometry measurements. T.S.S. performed the experiments and prepared the figures. T.S.S., D.L., S.-J.P. and J.C.C. interpreted the results and wrote the paper.

Corresponding authors

Correspondence to Daeyeon Lee, So-Jung Park or John C. Crocker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1097 kb)

Supplementary Movie 1

Supplementary Movie 1 (MP4 29215 kb)

Supplementary Movie 2

Supplementary Movie 2 (MP4 12104 kb)

Supplementary Movie 3

Supplementary Movie 3 (MP4 20417 kb)

Supplementary Movie 4

Supplementary Movie 4 (MP4 51239 kb)

Supplementary Movie 5

Supplementary Movie 5 (MP4 15190 kb)

Supplementary Movie 6

Supplementary Movie 6 (MP4 11412 kb)

Supplementary Movie 7

Supplementary Movie 7 (MP4 55059 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shim, T., Estephan, Z., Qian, Z. et al. Shape changing thin films powered by DNA hybridization. Nature Nanotech 12, 41–47 (2017).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research