Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Vectorial scanning force microscopy using a nanowire sensor

Abstract

Self-assembled nanowire (NW) crystals can be grown into nearly defect-free nanomechanical resonators with exceptional properties, including small motional mass, high resonant frequency and low dissipation. Furthermore, by virtue of slight asymmetries in geometry, a NW's flexural modes are split into doublets oscillating along orthogonal axes. These characteristics make bottom-up grown NWs extremely sensitive vectorial force sensors. Here, taking advantage of its adaptability as a scanning probe, we use a single NW to image a sample surface. By monitoring the frequency shift and direction of oscillation of both modes as we scan above the surface, we construct a map of all spatial tip–sample force derivatives in the plane. Finally, we use the NW to image electric force fields distinguishing between forces arising from the NW charge and polarizability. This universally applicable technique enables a form of atomic force microscopy particularly suited to mapping the size and direction of weak tip–sample forces.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental set-up.
Figure 2: Mode 1 and mode 2 frequency shift images.
Figure 3: 2D tip–sample force derivative, force and dissipation images.
Figure 4: Vector plots of electrostatic force fields.

References

  1. 1

    Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    CAS  Article  Google Scholar 

  2. 2

    Giessibl, F. J. Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003).

    CAS  Article  Google Scholar 

  3. 3

    Giessibl, F. J. Atomic resolution of the silicon (111)-(7×7) surface by atomic force microscopy. Science 267, 68–71 (1995).

    CAS  Article  Google Scholar 

  4. 4

    Giessibl, F. J., Hembacher, S., Bielefeldt, H. & Mannhart, J. Subatomic features on the silicon (111)-(7×7) surface observed by atomic force microscopy. Science 289, 422–425 (2000).

    CAS  Article  Google Scholar 

  5. 5

    Poggio, M. Sensing from the bottom up. Nat. Nanotech. 8, 482–483 (2013).

    CAS  Article  Google Scholar 

  6. 6

    Sazonova, V. et al. A tunable carbon nanotube electromechanical oscillator. Nature 431, 284–287 (2004).

    CAS  Article  Google Scholar 

  7. 7

    Bunch, J. S. et al. Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Perisanu, S. et al. High Q factor for mechanical resonances of batch-fabricated SiC nanowires. Appl. Phys. Lett. 90, 043113 (2007).

    Article  Google Scholar 

  9. 9

    Feng, X. L., He, R., Yang, P. & Roukes, M. L. Very high frequency silicon nanowire electromechanical resonators. Nano Lett. 7, 1953–1959 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Nichol, J. M., Hemesath, E. R., Lauhon, L. J. & Budakian, R. Displacement detection of silicon nanowires by polarization-enhanced fiber-optic interferometry. Appl. Phys. Lett. 93, 193110 (2008).

    Article  Google Scholar 

  11. 11

    Li, M. et al. Bottom-up assembly of large-area nanowire resonator arrays. Nat. Nanotech. 3, 88–92 (2008).

    CAS  Article  Google Scholar 

  12. 12

    Belov, M. et al. Mechanical resonance of clamped silicon nanowires measured by optical interferometry. J. Appl. Phys. 103, 074304 (2008).

    Article  Google Scholar 

  13. 13

    Gil-Santos, E. et al. Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires. Nat. Nanotech. 5, 641–645 (2010).

    CAS  Article  Google Scholar 

  14. 14

    Chaste, J. et al. A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotech. 7, 301–304 (2012).

    CAS  Article  Google Scholar 

  15. 15

    Moser, J. et al. Ultrasensitive force detection with a nanotube mechanical resonator. Nat. Nanotech. 8, 493–496 (2013).

    CAS  Article  Google Scholar 

  16. 16

    Moser, J., Eichler, A., Güttinger, J., Dykman, M. I. & Bachtold, A. Nanotube mechanical resonators with quality factors of up to 5 million. Nat. Nanotech. 9, 1007–1011 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Gysin, U., Rast, S., Kisiel, M., Werle, C. & Meyer, E. Low temperature ultrahigh vacuum noncontact atomic force microscope in the pendulum geometry. Rev. Sci. Instrum. 82, 023705 (2011).

    CAS  Article  Google Scholar 

  18. 18

    Nichol, J. M., Hemesath, E. R., Lauhon, L. J. & Budakian, R. Nanomechanical detection of nuclear magnetic resonance using a silicon nanowire oscillator. Phys. Rev. B 85, 054414 (2012).

    Article  Google Scholar 

  19. 19

    Nichol, J. M., Naibert, T. R., Hemesath, E. R., Lauhon, L. J. & Budakian, R. Nanoscale fourier-transform magnetic resonance imaging. Phys. Rev. X 3, 031016 (2013).

    Google Scholar 

  20. 20

    Nonnenmacher, M., O'Boyle, M. P. & Wickramasinghe, H. K. Kelvin probe force microscopy. Appl. Phys. Lett. 58, 2921–2923 (1991).

    Article  Google Scholar 

  21. 21

    Stipe, B. C., Mamin, H. J., Stowe, T. D., Kenny, T. W. & Rugar, D. Noncontact friction and force fluctuations between closely spaced bodies. Phys. Rev. Lett. 87, 096801 (2001).

    CAS  Article  Google Scholar 

  22. 22

    Gloppe, A. et al. Bidimensional nano-optomechanics and topological backaction in a non-conservative radiation force field. Nat. Nanotech. 9, 920–926 (2014).

    CAS  Article  Google Scholar 

  23. 23

    Pfeiffer, O., Bennewitz, R., Baratoff, A., Meyer, E. & Grütter, P. Lateral-force measurements in dynamic force microscopy. Phys. Rev. B 65, 161403 (2002).

    Article  Google Scholar 

  24. 24

    Giessibl, F. J., Herz, M. & Mannhart, J. Friction traced to the single atom. Proc. Natl Acad. Sci. USA 99, 12006–12010 (2002).

    CAS  Article  Google Scholar 

  25. 25

    Kawai, S., Kitamura, S.-I., Kobayashi, D. & Kawakatsu, H. Dynamic lateral force microscopy with true atomic resolution. Appl. Phys. Lett. 87, 173105 (2005).

    Article  Google Scholar 

  26. 26

    Kawai, S., Sasaki, N. & Kawakatsu, H. Direct mapping of the lateral force gradient on Si (111)-(7×7). Phys. Rev. B 79, 195412 (2009).

    Article  Google Scholar 

  27. 27

    Kawai, S. et al. Ultrasensitive detection of lateral atomic-scale interactions on graphite (0001) via bimodal dynamic force measurements. Phys. Rev. B 81, 085420 (2010).

    Article  Google Scholar 

  28. 28

    Cadeddu, D. et al. Time-resolved nonlinear coupling between orthogonal flexural modes of a pristine GaAs nanowire. Nano Lett. 16, 926–931 (2016).

    CAS  Article  Google Scholar 

  29. 29

    Karabacak, D., Kouh, T., Huang, C. C. & Ekinci, K. L. Optical knife-edge technique for nanomechanical displacement detection. Appl. Phys. Lett. 88, 193122 (2006).

    Article  Google Scholar 

  30. 30

    Faust, T. et al. Nonadiabatic dynamics of two strongly coupled nanomechanical resonator modes. Phys. Rev. Lett. 109, 037205 (2012).

    Article  Google Scholar 

  31. 31

    Kuehn, S., Loring, R. F. & Marohn, J. A. Dielectric fluctuations and the origins of noncontact friction. Phys. Rev. Lett. 96, 156103 (2006).

    Article  Google Scholar 

  32. 32

    Rieger, J., Faust, T., Seitner, M. J., Kotthaus, J. P. & Weig, E. M. Frequency and Q factor control of nanomechanical resonators. Appl. Phys. Lett. 101, 103110 (2012).

    Article  Google Scholar 

  33. 33

    Stern, J. E., Terris, B. D., Mamin, H. J. & Rugar, D. Deposition and imaging of localized charge on insulator surfaces using a force microscope. Appl. Phys. Lett. 53, 2717–2719 (1988).

    Article  Google Scholar 

  34. 34

    Schönenberger, C. & Alvarado, S. F. Observation of single charge carriers by force microscopy. Phys. Rev. Lett. 65, 3162–3164 (1990).

    Article  Google Scholar 

  35. 35

    Sanii, B. & Ashby, P. D. High sensitivity deflection detection of nanowires. Phys. Rev. Lett. 104, 147203 (2010).

    Article  Google Scholar 

  36. 36

    Uccelli, E. et al. Three-dimensional multiple-order twinning of self-catalyzed GaAs nanowires on Si substrates. Nano Lett. 11, 3827–3832 (2011).

    CAS  Article  Google Scholar 

  37. 37

    Russo-Averchi, E. et al. Suppression of three dimensional twinning for a 100% yield of vertical GaAs nanowires on silicon. Nanoscale 4, 1486–1490 (2012).

    CAS  Article  Google Scholar 

  38. 38

    Heigoldt, M. et al. Long range epitaxial growth of prismatic heterostructures on the facets of catalyst-free GaAs nanowires. J. Mater. Chem. 19, 840–848 (2009).

    CAS  Article  Google Scholar 

  39. 39

    Rugar, D., Mamin, H. J. & Guethner, P. Improved fiber-optic interferometer for atomic force microscopy. Appl. Phys. Lett. 55, 2588–2590 (1989).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank S. Martin and the mechanical workshop at the University of Basel Physics Department for help in designing and building the NW microscope and J. Teissier for useful discussions. We acknowledge the support of the ERC through Starting Grants NWScan (Grant No. 334767) and UpCon (Grant No. 239743), the Swiss Nanoscience Institute (Project P1207), the Swiss National Science Foundation (Ambizione Grant No. PZ00P2-161284/1 and Project Grant No. 200020-159893) and the NCCR Quantum Science and Technology (QSIT).

Author information

Affiliations

Authors

Contributions

N.R. and F.R.B. performed the experiment, G.T. and A.F.i.M. grew the nanowires, D.V., N.R., D.C. and M.P. designed and constructed the measurement set-up. N.R. fabricated the sample. N.R. and F.R.B. undertook the data analysis. N.R., F.R.B., and M.P. contributed to the interpretation of the data and wrote the manuscript. All authors commented and contributed to the manuscript. M.P. conceived and supervised the project.

Corresponding author

Correspondence to Martino Poggio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 305 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rossi, N., Braakman, F., Cadeddu, D. et al. Vectorial scanning force microscopy using a nanowire sensor. Nature Nanotech 12, 150–155 (2017). https://doi.org/10.1038/nnano.2016.189

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research