Vectorial scanning force microscopy using a nanowire sensor

Abstract

Self-assembled nanowire (NW) crystals can be grown into nearly defect-free nanomechanical resonators with exceptional properties, including small motional mass, high resonant frequency and low dissipation. Furthermore, by virtue of slight asymmetries in geometry, a NW's flexural modes are split into doublets oscillating along orthogonal axes. These characteristics make bottom-up grown NWs extremely sensitive vectorial force sensors. Here, taking advantage of its adaptability as a scanning probe, we use a single NW to image a sample surface. By monitoring the frequency shift and direction of oscillation of both modes as we scan above the surface, we construct a map of all spatial tip–sample force derivatives in the plane. Finally, we use the NW to image electric force fields distinguishing between forces arising from the NW charge and polarizability. This universally applicable technique enables a form of atomic force microscopy particularly suited to mapping the size and direction of weak tip–sample forces.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental set-up.
Figure 2: Mode 1 and mode 2 frequency shift images.
Figure 3: 2D tip–sample force derivative, force and dissipation images.
Figure 4: Vector plots of electrostatic force fields.

References

  1. 1

    Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

  2. 2

    Giessibl, F. J. Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003).

  3. 3

    Giessibl, F. J. Atomic resolution of the silicon (111)-(7×7) surface by atomic force microscopy. Science 267, 68–71 (1995).

  4. 4

    Giessibl, F. J., Hembacher, S., Bielefeldt, H. & Mannhart, J. Subatomic features on the silicon (111)-(7×7) surface observed by atomic force microscopy. Science 289, 422–425 (2000).

  5. 5

    Poggio, M. Sensing from the bottom up. Nat. Nanotech. 8, 482–483 (2013).

  6. 6

    Sazonova, V. et al. A tunable carbon nanotube electromechanical oscillator. Nature 431, 284–287 (2004).

  7. 7

    Bunch, J. S. et al. Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007).

  8. 8

    Perisanu, S. et al. High Q factor for mechanical resonances of batch-fabricated SiC nanowires. Appl. Phys. Lett. 90, 043113 (2007).

  9. 9

    Feng, X. L., He, R., Yang, P. & Roukes, M. L. Very high frequency silicon nanowire electromechanical resonators. Nano Lett. 7, 1953–1959 (2007).

  10. 10

    Nichol, J. M., Hemesath, E. R., Lauhon, L. J. & Budakian, R. Displacement detection of silicon nanowires by polarization-enhanced fiber-optic interferometry. Appl. Phys. Lett. 93, 193110 (2008).

  11. 11

    Li, M. et al. Bottom-up assembly of large-area nanowire resonator arrays. Nat. Nanotech. 3, 88–92 (2008).

  12. 12

    Belov, M. et al. Mechanical resonance of clamped silicon nanowires measured by optical interferometry. J. Appl. Phys. 103, 074304 (2008).

  13. 13

    Gil-Santos, E. et al. Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires. Nat. Nanotech. 5, 641–645 (2010).

  14. 14

    Chaste, J. et al. A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotech. 7, 301–304 (2012).

  15. 15

    Moser, J. et al. Ultrasensitive force detection with a nanotube mechanical resonator. Nat. Nanotech. 8, 493–496 (2013).

  16. 16

    Moser, J., Eichler, A., Güttinger, J., Dykman, M. I. & Bachtold, A. Nanotube mechanical resonators with quality factors of up to 5 million. Nat. Nanotech. 9, 1007–1011 (2014).

  17. 17

    Gysin, U., Rast, S., Kisiel, M., Werle, C. & Meyer, E. Low temperature ultrahigh vacuum noncontact atomic force microscope in the pendulum geometry. Rev. Sci. Instrum. 82, 023705 (2011).

  18. 18

    Nichol, J. M., Hemesath, E. R., Lauhon, L. J. & Budakian, R. Nanomechanical detection of nuclear magnetic resonance using a silicon nanowire oscillator. Phys. Rev. B 85, 054414 (2012).

  19. 19

    Nichol, J. M., Naibert, T. R., Hemesath, E. R., Lauhon, L. J. & Budakian, R. Nanoscale fourier-transform magnetic resonance imaging. Phys. Rev. X 3, 031016 (2013).

  20. 20

    Nonnenmacher, M., O'Boyle, M. P. & Wickramasinghe, H. K. Kelvin probe force microscopy. Appl. Phys. Lett. 58, 2921–2923 (1991).

  21. 21

    Stipe, B. C., Mamin, H. J., Stowe, T. D., Kenny, T. W. & Rugar, D. Noncontact friction and force fluctuations between closely spaced bodies. Phys. Rev. Lett. 87, 096801 (2001).

  22. 22

    Gloppe, A. et al. Bidimensional nano-optomechanics and topological backaction in a non-conservative radiation force field. Nat. Nanotech. 9, 920–926 (2014).

  23. 23

    Pfeiffer, O., Bennewitz, R., Baratoff, A., Meyer, E. & Grütter, P. Lateral-force measurements in dynamic force microscopy. Phys. Rev. B 65, 161403 (2002).

  24. 24

    Giessibl, F. J., Herz, M. & Mannhart, J. Friction traced to the single atom. Proc. Natl Acad. Sci. USA 99, 12006–12010 (2002).

  25. 25

    Kawai, S., Kitamura, S.-I., Kobayashi, D. & Kawakatsu, H. Dynamic lateral force microscopy with true atomic resolution. Appl. Phys. Lett. 87, 173105 (2005).

  26. 26

    Kawai, S., Sasaki, N. & Kawakatsu, H. Direct mapping of the lateral force gradient on Si (111)-(7×7). Phys. Rev. B 79, 195412 (2009).

  27. 27

    Kawai, S. et al. Ultrasensitive detection of lateral atomic-scale interactions on graphite (0001) via bimodal dynamic force measurements. Phys. Rev. B 81, 085420 (2010).

  28. 28

    Cadeddu, D. et al. Time-resolved nonlinear coupling between orthogonal flexural modes of a pristine GaAs nanowire. Nano Lett. 16, 926–931 (2016).

  29. 29

    Karabacak, D., Kouh, T., Huang, C. C. & Ekinci, K. L. Optical knife-edge technique for nanomechanical displacement detection. Appl. Phys. Lett. 88, 193122 (2006).

  30. 30

    Faust, T. et al. Nonadiabatic dynamics of two strongly coupled nanomechanical resonator modes. Phys. Rev. Lett. 109, 037205 (2012).

  31. 31

    Kuehn, S., Loring, R. F. & Marohn, J. A. Dielectric fluctuations and the origins of noncontact friction. Phys. Rev. Lett. 96, 156103 (2006).

  32. 32

    Rieger, J., Faust, T., Seitner, M. J., Kotthaus, J. P. & Weig, E. M. Frequency and Q factor control of nanomechanical resonators. Appl. Phys. Lett. 101, 103110 (2012).

  33. 33

    Stern, J. E., Terris, B. D., Mamin, H. J. & Rugar, D. Deposition and imaging of localized charge on insulator surfaces using a force microscope. Appl. Phys. Lett. 53, 2717–2719 (1988).

  34. 34

    Schönenberger, C. & Alvarado, S. F. Observation of single charge carriers by force microscopy. Phys. Rev. Lett. 65, 3162–3164 (1990).

  35. 35

    Sanii, B. & Ashby, P. D. High sensitivity deflection detection of nanowires. Phys. Rev. Lett. 104, 147203 (2010).

  36. 36

    Uccelli, E. et al. Three-dimensional multiple-order twinning of self-catalyzed GaAs nanowires on Si substrates. Nano Lett. 11, 3827–3832 (2011).

  37. 37

    Russo-Averchi, E. et al. Suppression of three dimensional twinning for a 100% yield of vertical GaAs nanowires on silicon. Nanoscale 4, 1486–1490 (2012).

  38. 38

    Heigoldt, M. et al. Long range epitaxial growth of prismatic heterostructures on the facets of catalyst-free GaAs nanowires. J. Mater. Chem. 19, 840–848 (2009).

  39. 39

    Rugar, D., Mamin, H. J. & Guethner, P. Improved fiber-optic interferometer for atomic force microscopy. Appl. Phys. Lett. 55, 2588–2590 (1989).

Download references

Acknowledgements

We thank S. Martin and the mechanical workshop at the University of Basel Physics Department for help in designing and building the NW microscope and J. Teissier for useful discussions. We acknowledge the support of the ERC through Starting Grants NWScan (Grant No. 334767) and UpCon (Grant No. 239743), the Swiss Nanoscience Institute (Project P1207), the Swiss National Science Foundation (Ambizione Grant No. PZ00P2-161284/1 and Project Grant No. 200020-159893) and the NCCR Quantum Science and Technology (QSIT).

Author information

N.R. and F.R.B. performed the experiment, G.T. and A.F.i.M. grew the nanowires, D.V., N.R., D.C. and M.P. designed and constructed the measurement set-up. N.R. fabricated the sample. N.R. and F.R.B. undertook the data analysis. N.R., F.R.B., and M.P. contributed to the interpretation of the data and wrote the manuscript. All authors commented and contributed to the manuscript. M.P. conceived and supervised the project.

Correspondence to Martino Poggio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 305 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rossi, N., Braakman, F., Cadeddu, D. et al. Vectorial scanning force microscopy using a nanowire sensor. Nature Nanotech 12, 150–155 (2017). https://doi.org/10.1038/nnano.2016.189

Download citation

Further reading