Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Imaging the motion of electrons across semiconductor heterojunctions


Technological progress since the late twentieth century has centred on semiconductor devices, such as transistors, diodes and solar cells1,2,3,4,5,6,7,8. At the heart of these devices is the internal motion of electrons through semiconductor materials due to applied electric fields3,9 or by the excitation of photocarriers2,4,5,8. Imaging the motion of these electrons would provide unprecedented insight into this important phenomenon, but requires high spatial and temporal resolution. Current studies of electron dynamics in semiconductors are generally limited by the spatial resolution of optical probes, or by the temporal resolution of electronic probes. Here, by combining femtosecond pump–probe techniques with spectroscopic photoemission electron microscopy10,11,12,13, we imaged the motion of photoexcited electrons from high-energy to low-energy states in a type-II 2D InSe/GaAs heterostructure. At the instant of photoexcitation, energy-resolved photoelectron images revealed a highly non-equilibrium distribution of photocarriers in space and energy. Thereafter, in response to the out-of-equilibrium photocarriers, we observed the spatial redistribution of charges, thus forming internal electric fields, bending the semiconductor bands, and finally impeding further charge transfer. By assembling images taken at different time-delays, we produced a movie lasting a few trillionths of a second of the electron-transfer process in the photoexcited type-II heterostructure—a fundamental phenomenon in semiconductor devices such as solar cells. Quantitative analysis and theoretical modelling of spatial variations in the movie provide insight into future solar cells, 2D materials and other semiconductor devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic of the TR-PEEM set-up and the band alignment of the InSe/GaAs heterostructure.
Figure 2: Photoexcited electrons residing at higher energy in GaAs compared with InSe at the instant of photoexcitation due to type-II band alignment.
Figure 3: Electron transport over time in the InSe/GaAs heterostructure showing the initial accumulation (red) and eventual recombination (blue) after photoexcitation.
Figure 4: Quantitative model reproducing the salient features of charge separation and transfer, formation of internal fields impeding further charge flow and eventual electron–hole recombination.


  1. 1

    Nakamura, S., Mukai, T. & Senoh, M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 64, 1687–1689 (1994).

    CAS  Article  Google Scholar 

  2. 2

    Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).

    CAS  Article  Google Scholar 

  3. 3

    Martínez-Blanco, J. et al. Gating a single-molecule transistor with individual atoms. Nat. Phys. 11, 640–644 (2015).

    Article  Google Scholar 

  4. 4

    Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    CAS  Article  Google Scholar 

  5. 5

    deQuilettes, D. W. et al. Solar cells. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015).

    CAS  Article  Google Scholar 

  6. 6

    Akasaki, I. et al. Stimulated-emission by current injection from an AlGaN/GaN/GaInN quantum-well device. Jpn. J. Appl. Phys. 34, 1517–1519 (1995).

    Article  Google Scholar 

  7. 7

    Franklin, A. D. et al. Sub-10 nm carbon nanotube transistor. Nano Lett. 12, 758–762 (2012).

    CAS  Article  Google Scholar 

  8. 8

    Graetzel, M., Janssen, R. A., Mitzi, D. B. & Sargent, E. H. Materials interface engineering for solution-processed photovoltaics. Nature 488, 304–312 (2012).

    CAS  Article  Google Scholar 

  9. 9

    Markov, I. L. Limits on fundamental limits to computation. Nature 512, 147–154 (2014).

    CAS  Article  Google Scholar 

  10. 10

    Fukumoto, K., Yamada, Y., Onda, K. & Koshihara, S.-y. Direct imaging of electron recombination and transport on a semiconductor surface by femtosecond time-resolved photoemission electron microscopy. Appl. Phys. Lett. 104, 053117 (2014).

    Article  Google Scholar 

  11. 11

    Kubo, A. et al. Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film. Nano Lett. 5, 1123–1127 (2005).

    CAS  Article  Google Scholar 

  12. 12

    Cinchetti, M. et al. Photoemission electron microscopy as a tool for the investigation of optical near fields. Phys. Rev. Lett. 95, 047601 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Bayer, D., Wiemann, C., Gaier, O., Bauer, M. & Aeschlimann, M. Time-resolved 2PPE and time-resolved PEEM as a probe of LSP's in silver nanoparticles. J. Nanomaterials 2008, 1–11 (2008).

    Article  Google Scholar 

  14. 14

    Hecht, E. Optics 4th edn (Addison-Wesley, 2002).

    Google Scholar 

  15. 15

    Kash, J. A. & Tsang, J. C. Dynamic internal testing of CMOS circuits using hot luminescence. IEEE Electron Dev. Lett. 18, 330–332 (1997).

    CAS  Article  Google Scholar 

  16. 16

    Fukumoto, K. et al. Femtosecond time-resolved photoemission electron microscopy for spatiotemporal imaging of photogenerated carrier dynamics in semiconductors. Rev. Sci. Instrum. 85, 083705 (2014).

    Article  Google Scholar 

  17. 17

    Aeschlimann, M. et al. Spatiotemporal control of nanooptical excitations. Proc. Natl Acad. Sci. USA 107, 5329–5333 (2010).

    CAS  Article  Google Scholar 

  18. 18

    Fukumoto, K., Yamada, Y., Koshihara, S. Y. & Onda, K. Lifetimes of photogenerated electrons on a GaAs surface affected by nanostructural defects. Appl. Phys. Express 8, 101201 (2015).

    Article  Google Scholar 

  19. 19

    Kubo, A., Pontius, N. & Petek, H. Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface. Nano Lett. 7, 470–475 (2007).

    CAS  Article  Google Scholar 

  20. 20

    Petek, H. Single-molecule femtochemistry: molecular imaging at the space-time limit. ACS Nano 8, 5–13 (2014).

    CAS  Article  Google Scholar 

  21. 21

    Mudd, G. W. et al. Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement. Adv. Mater. 25, 5714–5718 (2013).

    CAS  Article  Google Scholar 

  22. 22

    Lang, O., Klein, A., Pettenkofer, C., Jaegermann, W. & Chevy, A. Band lineup of lattice mismatched InSe/GaSe quantum well structures prepared by van der Waals epitaxy: absence of interfacial dipoles. J. Appl. Phys. 80, 3817–3821 (1996).

    CAS  Article  Google Scholar 

  23. 23

    Lei, S. et al. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe. ACS Nano 8, 1263–1272 (2014).

    CAS  Article  Google Scholar 

  24. 24

    Sánchez-Royo, J. F. et al. Electronic structure, optical properties, and lattice dynamics in atomically thin indium selenide flakes. Nano Res. 7, 1556–1568 (2014).

    Article  Google Scholar 

  25. 25

    Deckoff-Jones, S. et al. Observing the interplay between surface and bulk optical nonlinearities in thin van der Waals crystals. Sci. Rep. 6, 22620 (2016).

    CAS  Article  Google Scholar 

  26. 26

    Blakemore, J. S. Semiconducting and other major properties of gallium arsenide. J. Appl. Phys. 53, R123–R181 (1982).

    CAS  Article  Google Scholar 

  27. 27

    Nam, S. B. et al. Free-exciton energy spectrum in GaAs. Phys. Rev. B 13, 761–767 (1976).

    CAS  Article  Google Scholar 

  28. 28

    Gatos, H. C. Surface photovoltage spectroscopy—a new approach to the study of high-gap semiconductor surfaces. J. Vac. Sci. Technol. 10, 130–135 (1973).

    CAS  Article  Google Scholar 

  29. 29

    Tokudomi, S., Azuma, J., Takahashi, K. & Kamada, M. Ultrafast decay of surface photo-voltage effect on n-type GaAs(100) surface. J. Phys. Soc. Jpn 76, 104710 (2007).

    Article  Google Scholar 

  30. 30

    Johannsen, J. C. et al. Direct view of hot carrier dynamics in graphene. Phys. Rev. Lett. 111, 027403 (2013).

    Article  Google Scholar 

  31. 31

    Dani, K. M. et al. Intraband conductivity response in graphene observed using ultrafast infrared-pump visible-probe spectroscopy. Phys. Rev. B 86, 125403 (2012).

    Article  Google Scholar 

  32. 32

    Martínez-Pastor, J., Segura, A., Valdés, J. L. & Chevy, A. Electrical and photovoltaic properties of indium-tin-oxide/p-InSe/Au solar cells. J. Appl. Phys. 62, 1477–1483 (1987).

    Article  Google Scholar 

  33. 33

    Mentes, T. O., Zamborlini, G., Sala, A. & Locatelli, A. Cathode lens spectromicroscopy: methodology and applications. Beilstein J. Nanotechnol. 5, 1873–1886 (2014).

    CAS  Article  Google Scholar 

  34. 34

    Bauer, E. Surface Microscopy with Low Energy Electrons (Springer, 2014).

    Book  Google Scholar 

  35. 35

    Yim, C., Man, K., Xiao, X. & Altman, M. Low-energy electron microscopy of CO/Pt(111) surface diffusion by nonequilibrium coverage profile evolution. Phys. Rev. B 78, 155439 (2008).

    Article  Google Scholar 

  36. 36

    Murata, Y. et al. Orientation-dependent work function of graphene on Pd(111). Appl. Phys. Lett. 97, 143114 (2010).

    Article  Google Scholar 

  37. 37

    Lang, O. et al. Thin film growth and band lineup of In2O3 on the layered semiconductor InSe. J. Appl. Phys. 86, 5687–5691 (1999).

    CAS  Article  Google Scholar 

  38. 38

    Rana, F. et al. Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene. Phys. Rev. B 79, 115447 (2009).

    Article  Google Scholar 

  39. 39

    Millot, M., Broto, J.-M., George, S., González, J. & Segura, A. Electronic structure of indium selenide probed by magnetoabsorption spectroscopy under high pressure. Phys. Rev. B 81, 205211 (2010).

    Article  Google Scholar 

  40. 40

    Balkanski, M. & Wallis, R. F. Semiconductor Physics and Applications (Oxford Univ. Press, 2000).

    Google Scholar 

Download references


The work at Rice University was supported by Function Accelerated nanoMaterial Engineering, one of six centres of STARnet, a Semiconductor Research Corporation programme sponsored by the Microelectronics Advanced Research Corporation and the Defense Advanced Research Projects Agency, and also supported by the Multidisciplinary University Research Initiative Army Research Office programme, grant number W911NF-11-1-0362.

Author information




M.K.L.M. performed all experiments. A.M., J.M. and M.B.M.K. built the laser pump–probe set-up. S.D.-J., T.H. and A.W. fabricated and characterized the 2D InSe/GaAs samples. S.L., R.V. and P.M.A. grew the bulk InSe crystals. E.W. and M.K.L.M. analysed the data. K.M.D. supervised the project. All authors contributed to the discussions and manuscript preparation.

Corresponding author

Correspondence to Keshav M. Dani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1024 kb)

Supplementary Movie 1

Supplementary Movie 1 (MP4 6035 kb)

Supplementary Movie 2

Supplementary Movie 2 (MP4 6430 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Man, M., Margiolakis, A., Deckoff-Jones, S. et al. Imaging the motion of electrons across semiconductor heterojunctions. Nature Nanotech 12, 36–40 (2017).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research