Nanostructured glycan architecture is important in the inhibition of influenza A virus infection


Rapid change1 and zoonotic transmission to humans2 have enhanced the virulence of the influenza A virus (IAV)3. Neutralizing antibodies fail to provide lasting protection from seasonal epidemics1,4. Furthermore, the effectiveness of anti-influenza neuraminidase inhibitors has declined because of drug resistance5. Drugs that can block viral attachment and cell entry independent of antigenic evolution or drug resistance might address these problems. We show that multivalent 6′-sialyllactose-polyamidoamine (6SL–PAMAM) conjugates, when designed to have well-defined ligand valencies and spacings, can effectively inhibit IAV infection. Generation 4 (G4) 6SL–PAMAM conjugates with a spacing of around 3 nm between 6SL ligands (S3–G4) showed the strongest binding to a hemagglutinin trimer (dissociation constant of 1.6 × 10−7 M) and afforded the best inhibition of H1N1 infection. S3–G4 conjugates were resistant to hydrolysis by H1N1 neuraminidase. These conjugates protected 75% of mice from a lethal challenge with H1N1 and prevented weight loss in infected animals. The structure-based design of multivalent nanomaterials, involving modulation of nanoscale backbone structures and number and spacing between ligands, resulted in optimal inhibition of IAV infection. This approach may be broadly applicable for designing effective and enduring therapeutic protection against human or avian influenza viruses.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Design and synthesis of multivalent 6SL–PAMAM dendrimer conjugates.
Figure 2: The ligand number calculated for the S3–G4 6SL dendrimer conjugates provides for the detailed structure shown.
Figure 3: In vitro inhibitory activity of 6SL–PAMAM dendrimer conjugates against H1N1 virus infection.
Figure 4: In vivo inhibitory efficacy of S3–G4 against H1N1 and HA binding models.


  1. 1

    Smith, D. J. et al. Mapping the antigenic and genetic evolution of influenza virus. Science 305, 371–376 (2004).

    CAS  Article  Google Scholar 

  2. 2

    Lam, T. T. et al. Dissemination, divergence and establishment of H7N9 influenza viruses in China. Nature 522, 102–105 (2015).

    CAS  Article  Google Scholar 

  3. 3

    Schrauwen, E. J. et al. Determinants of virulence of influenza A virus. Eur. J. Clin. Microbiol. Infect. Dis. 33, 479–490 (2014).

    CAS  Article  Google Scholar 

  4. 4

    Schrauwen, E. J. & Fouchier, R. A. Host adaptation and transmission of influenza A viruses in mammals. Emerg. Microbes Infect. 3, e9 (2014).

    Article  Google Scholar 

  5. 5

    Moscona, A. Global transmission of oseltamivir-resistant influenza. N. Engl. J. Med. 360, 953–956 (2009).

    CAS  Article  Google Scholar 

  6. 6

    Shi, Y., Wu, Y., Zhang, W., Qi, J. & Gao, G. F. Enabling the ‘host jump’: structural determinants of receptor-binding specificity in influenza A viruses. Nat. Rev. Microbiol. 12, 822–831 (2014).

    CAS  Article  Google Scholar 

  7. 7

    Hai, R. et al. Influenza A(H7N9) virus gains neuraminidase inhibitor resistance without loss of in vivo virulence or transmissibility. Nat. Commun. 4, 2854 (2013).

    Article  Google Scholar 

  8. 8

    Rogers, G. N., Pritchett, T. J., Lane, J. L. & Paulson, J. C. Differential sensitivity of human, avian, and equine influenza A viruses to a glycoprotein inhibitor of infection: selection of receptor specific variants. Virology 131, 394–408 (1983).

    CAS  Article  Google Scholar 

  9. 9

    Hendricks, G. L. et al. Sialylneolacto-N-tetraose c (LSTc)-bearing liposomal decoys capture influenza A virus. J. Biol. Chem. 288, 8061–8073 (2013).

    CAS  Article  Google Scholar 

  10. 10

    Takemoto, D. K., Skehel, J. J. & Wiley, D. C. A surface plasmon resonance assay for the binding of influenza virus hemagglutinin to its sialic acid receptor. Virology 217, 452–458 (1996).

    CAS  Article  Google Scholar 

  11. 11

    Reuter, J. D. et al. Inhibition of viral adhesion and infection by sialic-acid-conjugated dendritic polymers. Bioconjug. Chem. 10, 271–278 (1999).

    CAS  Article  Google Scholar 

  12. 12

    Gambaryan, A. S. et al. Polymeric inhibitor of influenza virus attachment protects mice from experimental influenza infection. Antiviral Res. 55, 201–205 (2002).

    CAS  Article  Google Scholar 

  13. 13

    Esfand, R. & Tomalia, D. A. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov. Today 6, 427–436 (2001).

    CAS  Article  Google Scholar 

  14. 14

    Goodwin, A. P., Lam, S. S. & Fréchet, JMJ . Rapid, efficient synthesis of heterobifunctional biodegradable dendrimers. J. Am. Chem. Soc. 129, 6994–6995 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Mammen, M., Choi, S. K. & Whitesides, G. M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 37, 2754–2794 (1998).

    Article  Google Scholar 

  16. 16

    Patke, S. et al. Design of monodisperse and well-defined polypeptide-based polyvalent inhibitors of anthrax toxin. Angew. Chem. Int. Ed. 53, 8037–8040 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Glick, G. D., Toogood, P. L., Wiley, D. C., Skehel, J. J. & Knowles, J. R. Ligand recognition by influenza virus: the binding of bivalent sialosides. J. Biol. Chem. 266, 23660–23669 (1991).

    CAS  Google Scholar 

  18. 18

    Chinarev, A. A. et al. in Sialobiology and Other Novel Forms of Glycosylation (eds Inoue, Y., Lee, Y. C. & Troy, F. A.) 135–143 (Gakushin, 1999).

    Google Scholar 

  19. 19

    Olson, S. T. & Shore, J. D. Binding of high affinity heparin to antithrombin III: characterization of the protein fluorescence enhancement. J. Biol. Chem. 256, 11065–11072 (1981).

    CAS  Google Scholar 

  20. 20

    Harris, A. et al. Influenza virus pleiomorphy characterized by cryoelectron tomography. Proc. Natl Acad. Sci. USA 103, 19123–19127 (2006).

    CAS  Article  Google Scholar 

  21. 21

    Zhou, Z. H. Towards atomic resolution structural determination by single-particle cryo-electron microscopy. Curr. Opin. Struct. Biol. 18, 218–228 (2008).

    CAS  Article  Google Scholar 

  22. 22

    Eichman, J. D., Bielinska, A. U., Kukowska-Latallo, J. F. & Baker, J. R. Jr The use of PAMAM dendrimers in the efficient transfer of genetic material into cells. Pharm. Sci. Technol. Today 3, 232–245 (2000).

    CAS  Article  Google Scholar 

  23. 23

    Sakai, T. et al. Dual wavelength imaging allows analysis of membrane fusion of influenza virus inside cells. J. Virol. 80, 2013–2018 (2006).

    CAS  Article  Google Scholar 

  24. 24

    Kwon, D., Shin, K., Kim, S. J., Lee, J. Y. & Kang, C. Mammalian pathogenesis of oseltamivir-resistant pandemic (H1N1) 2009 influenza virus isolated in South Korea. Virus Res. 185, 41–46 (2014).

    CAS  Article  Google Scholar 

  25. 25

    Matrosovich, M. & Klenk, H. D. Natural and synthetic sialic acid-containing inhibitors of influenza virus receptor binding. Rev. Med. Virol. 13, 85–97 (2003).

    CAS  Article  Google Scholar 

  26. 26

    Polizzotti, B. D., Maheshwari, R., Vinkenborg, J. & Kiick, K. L. Effects of saccharide spacing and chain extension on toxin inhibition by glycopolypeptides of well-defined architecture. Macromolecules 40, 7103–7110 (2007).

    CAS  Article  Google Scholar 

  27. 27

    Choi, S. K., Mammen, M. & Whitesides, G. M. Monomeric inhibitors of influenza neuraminidase enhance the hemagglutination inhibition activities of polyacrylamides presenting multiple C-sialoside groups. Chem. Biol. 3, 97–104 (1996).

    CAS  Article  Google Scholar 

  28. 28

    Sauter, N. K. et al. Binding of influenza virus hemagglutinin to analogs of its cell-surface receptor, sialic acid: analysis by proton nuclear magnetic resonance spectroscopy and X-ray crystallography. Biochemistry 31, 9609–9621 (1992).

    CAS  Article  Google Scholar 

  29. 29

    Rowe, T. et al. Detection of antibody to avian influenza A (H5N1) virus in human serum by using a combination of serologic assays. J. Clin. Microbiol. 37, 937–943 (1999).

    CAS  Google Scholar 

  30. 30

    Isaacs, C. E. et al. Epigallocatechin gallate inactivates clinical isolates of herpes simplex virus. Antimicrob. Agents Chemother. 52, 962–970 (2008).

    CAS  Article  Google Scholar 

  31. 31

    Jung, H. S., Komatsu, S., Ikebe, M. & Craig, R. Head-head and head-tail interaction: a general mechanism for switching off myosin II activity in cells. Mol. Biol. Cell. 19, 3234–3242 (2008).

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Research Foundation of Korea grant funded by the Korea government (MSIP) (NRF-2013R1A2A2A01068858), Marine Biotechnology Program (PJT200620) funded by Ministry of Oceans and Fisheries, and Basic Science Research Program funded by the Ministry of Education (2015R1D1A1A01060512).

Author information




S.-J.K, D.H.N., and J.H.K. performed all of the experiments and analysed all data. M.D. performed the microneutralization assays. F.Z. performed the SPR analyses. E.J.P. synthesized the 6SL–PAMAM dendrimer conjugates. J.-H.P., H.Y. and C.-S.S. conducted the murine experiments. R.S.K. and J.S.D. provided critical feedback on the manuscript. S.-J.K and K.B.L. planned the experiments, interpreted the results, and wrote the manuscript with R.J.L. and J.S.D.

Corresponding authors

Correspondence to Kyung Bok Lee or Robert J. Linhardt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1970 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kwon, S., Na, D., Kwak, J. et al. Nanostructured glycan architecture is important in the inhibition of influenza A virus infection. Nature Nanotech 12, 48–54 (2017).

Download citation


Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research