Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Notch filtering the nuclear environment of a spin qubit

This article has been updated

Abstract

Electron spins in gate-defined quantum dots provide a promising platform for quantum computation1,2,3,4,5,6,7. In particular, spin-based quantum computing in gallium arsenide takes advantage of the high quality of semiconducting materials, reliability in fabricating arrays of quantum dots and accurate qubit operations5,6,7,8,9,10. However, the effective magnetic noise arising from the hyperfine interaction with uncontrolled nuclear spins in the host lattice constitutes a major source of decoherence4,5,10,11. Low-frequency nuclear noise, responsible for fast (10 ns) inhomogeneous dephasing5, can be removed by echo techniques4,5,11,12,13,14. High-frequency nuclear noise, recently studied via echo revivals4,11, occurs in narrow-frequency bands related to differences in Larmor precession of the three isotopes 69Ga, 71Ga and 75As (refs 15,16,17). Here, we show that both low- and high-frequency nuclear noise can be filtered by appropriate dynamical decoupling sequences, resulting in a substantial enhancement of spin qubit coherence times. Using nuclear notch filtering, we demonstrate a spin coherence time (T2) of 0.87 ms, five orders of magnitude longer than typical exchange gate times, and exceeding the longest coherence times reported to date in Si/SiGe gate-defined quantum dots18,19.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Singlet–triplet qubit interacting with a nuclear spin bath.
Figure 2: Frequency-selective dynamical decoupling.
Figure 3: Revival of coherence due to decoupling from nuclear Larmor precession.
Figure 4: Effect of magnetic field and τ on qubit coherence.
Figure 5: Singlet return probability, PS, as a function of total separation time, T = , for optimized and fixed values of τ and Bext.

Similar content being viewed by others

Change history

  • 26 October 2016

    In the version of this Letter originally published online, in Fig. 2c, the x axis label was missing. This error has been corrected in all versions of the Letter.

References

  1. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    Article  CAS  Google Scholar 

  2. Veldhorst, M. et al. A two-qubit logic gate in silicon. Nature 526, 410–414 (2015).

    Article  CAS  Google Scholar 

  3. Nowack, K. C. et al. Single-shot correlations and two-qubit gate of solid-state spins. Science 333, 1269–1272 (2011).

    Article  CAS  Google Scholar 

  4. Bluhm, H. et al. Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs. Nat. Phys. 7, 109–113 (2011).

    Article  CAS  Google Scholar 

  5. Petta, J. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  CAS  Google Scholar 

  6. Nowack, K. C., Koppens, F. H. L., Nazarov, Y. V. & Vandersypen, L. M. K. Coherent control of a single electron spin with electric fields. Science 318, 1430–1433 (2007).

    Article  CAS  Google Scholar 

  7. Maune, B. M. et al. Coherent singlet-triplet oscillations in a silicon-based double quantum dot. Nature 481, 344–347 (2012).

    Article  CAS  Google Scholar 

  8. Foletti, S., Bluhm, H., Mahalu, D., Umansky, V. & Yacoby, A. Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization. Nat. Phys. 5, 903–908 (2010).

    Article  Google Scholar 

  9. Dial, O. E. et al. Charge noise spectroscopy using coherent exchange oscillations in a singlet-triplet qubit. Phys. Rev. Lett. 110, 146804 (2013).

    Article  CAS  Google Scholar 

  10. Martins, F. et al. Noise suppression using symmetric exchange gates in spin qubits. Phys. Rev. Lett. 116, 116801 (2016).

    Article  Google Scholar 

  11. Botzem, T. et al. Quadrupolar and anisotropy effects on dephasing in two-electron spin qubits in GaAs. Nat. Commun. 7, 11170 (2016).

    Article  CAS  Google Scholar 

  12. Viola, L. & Lloyd, S. Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733–2744 (1998).

    Article  CAS  Google Scholar 

  13. Barthel, C., Medford, J., Marcus, C. M., Hanson, M. P. & Gossard, A. C. Interlaced dynamical decoupling and coherent operation of a singlet-triplet qubit. Phys. Rev. Lett. 105, 266808 (2010).

    Article  CAS  Google Scholar 

  14. Medford, J. et al. Scaling of dynamical decoupling for spin qubits. Phys. Rev. Lett. 108, 086802 (2012).

    Article  CAS  Google Scholar 

  15. Cywiński, L., Witzel, W. M. & Das Sarma, S. Electron spin dephasing due to hyperfine interactions with a nuclear spin bath. Phys. Rev. Lett. 102, 057601 (2009).

    Article  Google Scholar 

  16. Cywiński, L., Witzel, W. M. & Das Sarma, S. Pure quantum dephasing of a solid-state electron spin qubit in a large nuclear spin bath coupled by long-range hyperfine-mediated interactions. Phys. Rev. B 79, 245314 (2009).

    Article  Google Scholar 

  17. Neder, I. et al. Semiclassical model for the dephasing of a two-electron spin qubit coupled to a coherently evolving nuclear spin bath. Phys. Rev. B 84, 035441 (2011).

    Article  Google Scholar 

  18. Eng, K. et al. Isotopically enhanced triple-quantum-dot qubit. Sci. Adv. 1, e1500214 (2015).

    Article  Google Scholar 

  19. Kawakami, E. et al. Gate fidelity and coherence of an electron spin in a Si/SiGe quantum dot with micromagnet. Preprint at http://arXiv.org/abs/1602.08334 (2016).

  20. Barthel, C., Reilly, D. J., Marcus, C. M., Hanson, M. P. & Gossard, A. C. Rapid single-shot measurement of a singlet-triplet qubit. Phys. Rev. Lett. 103, 160503 (2009).

    Article  CAS  Google Scholar 

  21. Reilly, D. J. et al. Measurement of temporal correlations of the overhauser field in a double quantum dot. Phys. Rev. Lett. 101, 236803 (2008).

    Article  CAS  Google Scholar 

  22. de Sousa, R. & Das Sarma, S. Theory of nuclear-induced spectral diffusion: spin decoherence of phosphorus donors in Si and GaAs quantum dots. Phys. Rev. B 68, 115322 (2003).

    Article  Google Scholar 

  23. Yao, W., Liu, R. B. & Sham, L. J. Theory of electron spin decoherence by interacting nuclear spins in a quantum dot. Phys. Rev. B 74, 195301 (2006).

    Article  Google Scholar 

  24. Childress, L. I. et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006).

    Article  CAS  Google Scholar 

  25. Martinis, J., Nam, S., Aumentado, J., Lang, K. & Urbina, C. Decoherence of a superconducting qubit due to bias noise. Phys. Rev. B 67, 094510 (2003).

    Article  Google Scholar 

  26. Cywiński, L., Lutchyn, R. M., Nave, C. P. & Das Sarma, S. How to enhance dephasing time in superconducting qubits. Phys. Rev. B 77, 174509 (2008).

    Article  Google Scholar 

  27. Biercuk, M. J., Doherty, A. C. & Uys, H. Dynamical decoupling sequence construction as a filter-design problem. J. Phys. B 44, 154002 (2010).

    Article  Google Scholar 

  28. Soare, A. et al. Experimental noise filtering by quantum control. Nat. Phys. 10, 825–829 (2014).

    Article  CAS  Google Scholar 

  29. Kabytayev, C. et al. Robustness of composite pulses to time-dependent control noise. Phys. Rev. A 90, 012316 (2014).

    Article  Google Scholar 

  30. Álvarez, G. A. & Suter, D. Measuring the spectrum of colored noise by dynamical decoupling. Phys. Rev. Lett. 107, 230501 (2011).

    Article  Google Scholar 

  31. Deng, C. & Hu, X. Analytical solution of electron spin decoherence through hyperfine interaction in a quantum dot. Phys. Rev. B 73, 241303(R) (2006).

    Article  Google Scholar 

  32. Carr, H. Y. & Purcell, E. M. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94, 630–638 (1954).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Eriksen for help in preparation of the reflectometry set-up. This work was supported by IARPA Multi-Qubit Coherent Operations (MQCO) programme, LPS-MPO-CMTC, the Polish National Science Centre (NCN) under grant no. DEC-2012/07/B/ST3/03616, the Army Research Office, the Villum Foundation and the Danish National Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

S.F., G.C.G. and M.J.M. grew the heterostructure. P.D.N. fabricated the device. F.M., P.D.N., F.K. and F.K.M. prepared the experimental set-up. F.K.M., F.M. and F.K. performed the experiment. E.B., Ł.C. and M.S.R. developed the theoretical model and performed simulations. F.K.M., F.K., F.M., E.B., Ł.C., M.S.R. and C.M.M. analysed data and prepared the manuscript.

Corresponding author

Correspondence to Ferdinand Kuemmeth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2276 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malinowski, F., Martins, F., Nissen, P. et al. Notch filtering the nuclear environment of a spin qubit. Nature Nanotech 12, 16–20 (2017). https://doi.org/10.1038/nnano.2016.170

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.170

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing