Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register

This article has been updated

Abstract

The generation and control of fast switchable magnetic fields with large gradients on the nanoscale is of fundamental interest in material science and for a wide range of applications. However, it has not yet been possible to characterize those fields at high bandwidth with arbitrary orientations. Here, we measure the magnetic field generated by a hard-disk-drive write head with high spatial resolution and large bandwidth by coherent control of single electron and nuclear spins. We are able to derive field profiles from coherent spin Rabi oscillations close to the gigahertz range, measure magnetic field gradients on the order of 1 mT nm–1 and quantify axial and radial components of a static and dynamic magnetic field independent of its orientation. Our method paves the way for precision measurement of the magnetic fields of nanoscale write heads, which is important for future miniaturization of these devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hard-disk writer and NV centre.
Figure 2: PL imaging and d.c. field reconstruction.
Figure 3: Electron spin magnetometry.
Figure 4: Nuclear spin magnetometry.

Similar content being viewed by others

Change history

  • 08 December 2016

    In the version of this Article originally published online, there were several typographical errors. The penultimate sentence in the abstract has been amended to 'We are able to derive field profiles from coherent spin Rabi oscillations close to the gigahertz range, measure magnetic field gradients on the order of 1 mT nm–1 and quantify axial and radial components of a static and dynamic magnetic field independent of its orientation.' The second sentence in the Conclusions has been corrected to 'The measured field gradients of the order of mT nm–1 will be of use in quantum spintronic devices to locally drive electron spins in an array of interacting spins with distance on the order of few tens of nanometres, for instance4.' Finally the page range in reference 8 has been changed to '648-651'. These corrections have been made in all versions of the Article.

References

  1. Moser, A. et al. Magnetic recording: advancing into the future. J. Phys. D 35, R157–R167 (2002).

    Article  CAS  Google Scholar 

  2. Fuchs, G. D., Dobrovitski, V. V., Toyli, D. M., Heremans, F. J. & Awschalom, D. D. Gigahertz dynamics of a strongly driven single quantum spin. Science 326, 1520–1522 (2009).

    Article  CAS  Google Scholar 

  3. Cardellino, J. et al. The effect of spin transport on spin lifetime in nanoscale systems. Nat. Nanotechnol. 9, 343–347 (2014).

    Article  CAS  Google Scholar 

  4. Dolde, F. et al. Room-temperature entanglement between single defect spins in diamond. Nat. Phys. 9, 139–143 (2013).

    Article  CAS  Google Scholar 

  5. Dolde, F. et al. High-fidelity spin entanglement using optimal control. Nat. Commun. 5, 3371 (2014).

    Article  Google Scholar 

  6. Doherty, M. W. et al. Theory of the ground-state spin of the NV-center in diamond. Phys. Rev. B 85, 205203 (2012).

    Article  Google Scholar 

  7. van der Sar, T. et al. Decoherence-protected quantum gates for a hybrid solid-state spin register. Nature 484, 82–86 (2012).

    Article  CAS  Google Scholar 

  8. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    Article  CAS  Google Scholar 

  9. Grinolds, M. S. et al. Nanoscale magnetic imaging of a single electron spin under ambient conditions. Nat. Phys. 9, 215–219 (2013).

    Article  CAS  Google Scholar 

  10. Grinolds, M. S. et al. Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins. Nat. Nanotechnol. 9, 279–284 (2014).

    Article  CAS  Google Scholar 

  11. Arai, K. et al. Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nat. Nanotechnol. 10, 859–864 (2015).

    Article  CAS  Google Scholar 

  12. Grinolds, M. S. et al. Quantum control of proximal spins using nanoscale magnetic resonance imaging. Nat. Phys. 7, 687–692 (2011).

    Article  CAS  Google Scholar 

  13. Tetienne, J. P. et al. Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope. Science 344, 1366–1369 (2014).

    Article  CAS  Google Scholar 

  14. Kaufmann, S. et al. Detection of atomic spin labels in a lipid bilayer using a single-spin nanodiamond probe. Proc. Natl Acad. Sci. USA 110, 10894–10898 (2013).

    Article  CAS  Google Scholar 

  15. Steinert, S. et al. Magnetic spin imaging under ambient conditions with sub-cellular resolution. Nat. Commun. 4, 1607 (2013).

    Article  CAS  Google Scholar 

  16. Glenn, D. R. et al. Single-cell magnetic imaging using a quantum diamond microscope. Nat. Methods 12, 736–738 (2015).

    Article  CAS  Google Scholar 

  17. Steinert, S. et al. High sensitivity magnetic imaging using an array of spins in diamond. Rev. Sci. Instrum. 81, 043705 (2010).

    Article  CAS  Google Scholar 

  18. Appel, P., Ganzhorn, M., Neu, E. & Maletinsky, P. Nanoscale microwave imaging with a single electron spin in diamond. New J. Phys. 17, 112001 (2015).

    Article  Google Scholar 

  19. Rugar, D. et al. Proton magnetic resonance imaging using a nitrogen-vacancy spin sensor. Nat. Nanotechnol. 10, 120–124 (2015).

    Article  CAS  Google Scholar 

  20. Fedder, H. et al. Towards T (1)-limited magnetic resonance imaging using Rabi beats. Appl. Phys. B 102, 497–502 (2011).

    Article  CAS  Google Scholar 

  21. Shin, C. et al. Sub-optical resolution of single spins using magnetic resonance imaging at room temperature in diamond. J. Lumin. 130, 1635–1645 (2010).

    Article  CAS  Google Scholar 

  22. Kronmueller, H. & Parkin, S. Handbook of Magnetism and Advanced Magnetic Materials (John Wiley & Sons, 2007).

    Book  Google Scholar 

  23. Tao, Y., Eichler, A., Holzherr, T. & Degen, C. L. A switchable source for extremely high magnetic field gradients. Preprint at http://arxiv.org/abs/1512.03185v1 (2015).

  24. Doherty, M. W. et al. Measuring the defect structure orientation of a single NV-centre in diamond. New J. Phys. 16, 063067 (2014).

    Article  Google Scholar 

  25. Epstein, R. J., Mendoza, F. M., Kato, Y. K. & Awschalom, D. D. Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond. Nat. Phys. 1, 94–98 (2005).

    Article  CAS  Google Scholar 

  26. Tetienne, J. P. et al. Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging. New J. Phys. 14, 103033 (2012).

    Article  Google Scholar 

  27. Degen, C. L., Poggio, M., Mamin, H. J., Rettner, C. T. & Rugar, D. Nanoscale magnetic resonance imaging. Proc. Natl Acad. Sci. USA 106, 1313–1317 (2009).

    Article  CAS  Google Scholar 

  28. Nichol, J. M., Naibert, T. R., Hemesath, E. R., Lauhon, L. J. & Budakian, R. Nanoscale fourier-transform magnetic resonance imaging. Phys. Rev. X 3, 031016 (2013).

    Google Scholar 

  29. Keilmann, F., vanderWeide, D. W., Eickelkamp, T., Merz, R. & Stockle, D. Extreme sub-wavelength resolution with a scanning radio-frequency transmission microscope. Opt. Commun. 129, 15–18 (1996).

    Article  CAS  Google Scholar 

  30. Waldherr, G. et al. High-dynamic-range magnetometry with a single nuclear spin in diamond. Nat. Nanotechnol. 7, 105–108 (2012).

    Article  CAS  Google Scholar 

  31. Smeltzer, B., Childress, L. & Gali, A. 13C hyperfine interactions in the nitrogen-vacancy centre in diamond. New J. Phys. 13, 025021 (2011).

    Article  Google Scholar 

  32. Jelezko, F. et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004).

    Article  CAS  Google Scholar 

  33. Rao, K. R. K. & Suter, D. Characterization of hyperfine interaction between an NV electron spin and a first-shell 13C nuclear spin in diamond. Preprint at http://arxiv.org/abs/1603.09257 (2016).

  34. Childress, L. et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the German Science Foundation (SFB-TR 21, SPP1601 and FOR1493), the EU (SIQS), the DIADEMS consortium and the MPG. Furthermore, we thank I. Gerhardt, A. Finkler and H. Fedder for their support and J. Heidmann of Integral Solutions International for providing hard-disk write-head samples and technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

I.J., P.N., F.E.H., and J.W. conceived the experiments. I.J. performed the experiments. I.J. and Y.W. analyzed the data. I.J., P.N., Y.W. and D.B.R.D. provided analytical tools and theoretical framework. F.E.H. and M.A.B. contributed simulations on hard disk heads and hard disk head samples. M.M., A.E. and D.T. provided {100} and {111} diamond membrane samples. I.J. and J.W. co-wrote the paper.

Corresponding author

Correspondence to Ingmar Jakobi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2007 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jakobi, I., Neumann, P., Wang, Y. et al. Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nature Nanotech 12, 67–72 (2017). https://doi.org/10.1038/nnano.2016.163

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.163

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing