Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Origin and control of blinking in quantum dots

Abstract

Semiconductor nanocrystals offer an enormous diversity of potential device applications, based on their size-tunable photoluminescence, high optical stability and 'bottom-up' chemical approaches to self-assembly. However, the promise of such applications can be seriously limited by photoluminescence intermittency in nanocrystal emission, that is, 'blinking', arising from the escape of either one or both of the photoexcited carriers to the nanocrystal surface. In the first scenario, the remaining nanocrystal charge quenches photoluminescence via non-radiative Auger recombination, whereas for the other, the exciton is thought to be intercepted before thermalization and does not contribute to the photoluminescence. This Review summarizes the current understanding of the mechanisms responsible for nanocrystal blinking kinetics as well as core–shell engineering efforts to control such phenomena. In particular, 'softening' of the core–shell confinement potential strongly suppresses non-radiative Auger processes in charged nanocrystals, with successful non-blinking implementations demonstrated in CdSe–CdS core–thick-shell nanocrystals and their modifications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural and optical properties of NCs.
Figure 2: Blinking of colloidal NCs.
Figure 3: Multiscale distribution of 'on' and 'off' time intervals in fluorescence trajectories of a single NC.
Figure 4: Electrochemically controlled switching between B-type and A-type blinking.
Figure 5: Schematics for describing the diffusion-controlled electron transfer model of Tang and Marcus32,40.
Figure 6: Suppression of non-radiative Auger decay by softening the shape of the NC confinement potential.
Figure 7: Suppression of the non-radiative Auger recombination in negatively charged CdSe–CdS core–thick-shell NCs with 2.5 nm core radius and 6 nm shell thickness.
Figure 8: Effect of softening the confinement potential in CdSe–CdS core–thick-shell NCs on the PL.
Figure 9: Comparison of PL quantum yields of giant and core–alloyed shell NCs.

Similar content being viewed by others

References

  1. Ekimov, A. I., Onushchenko, A. A. & Tzehomski, V. A. Excitonic absorption by CuCl microcrystals in a glass matrices. Sov. Phys. Chem. Glass 6, 511–512 (1980).

    CAS  Google Scholar 

  2. Golubkov, V. V., Ekimov, A. I., Onushchenko, A. A. & Tzehomski, V. A. Growth kinetics of the CuCl microcrystals growth in glass matrices. Sov. Phys. Chem. Glass 7, 264–269 (1981).

    Google Scholar 

  3. Ekimov, A. I. & Onushchenko, A. A. Quantum size effect in three dimensional microscopic semiconductor crystals. JETP Lett. 34, 345–349 (1981).

    Google Scholar 

  4. Brus, L. E. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 79, 5566–5571 (1983).

    Article  CAS  Google Scholar 

  5. Brus, L. E. Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984).

    Article  CAS  Google Scholar 

  6. Ekimov, A. I. & Onushchenko, A. A. Size quantization of the electron energy spectrum in semiconductor microcrystals. JETP Lett. 40, 1136–1139 (1984).

    Google Scholar 

  7. Ekimov, A. I., Efros, Al. L. & Onushchenko, A. A. Quantum size effect in semiconductor microcrystals. Solid State Commun. 56, 921–924 (1985).

    Article  CAS  Google Scholar 

  8. Efros, Al. L. & Efros, A. L. Interband absorption of light in semiconductor sphere. Sov. Phys. Semicond. 16, 772–775 (1982).

    Google Scholar 

  9. Weidman, M. C., Beck, M. E., Hoffman, R. S., Prins, F. & Tisdale, W. A. Monodisperse, air-stable PbS nanocrystals via precursor stoichiometry control. ACS Nano 8, 6363–6371 (2014).

    Article  CAS  Google Scholar 

  10. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270, 1335–1338 (1995).

    Article  CAS  Google Scholar 

  11. Hughes, B. K. et al. Synthesis and spectroscopy of PbSe fused quantum-dot dimers. J. Am. Chem. Soc. 136, 4670–4679 (2014).

    Article  CAS  Google Scholar 

  12. Chan, W. C. W. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).

    Article  CAS  Google Scholar 

  13. Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).

    CAS  Google Scholar 

  14. Bruchez, M. J., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998).

    Article  CAS  Google Scholar 

  15. Kim, T.-H., Jun, S., Cho, K.-S., Choi, B. L. & Jang, E. Bright and stable quantum dots and their applications in full-color displays. MRS Bull. 38, 712–720 (2013).

    Article  CAS  Google Scholar 

  16. Lounis, B. & Moerner, W. E. Single photons on demand from a single molecule at room temperature. Nature 407, 491–493 (2000).

    Article  CAS  Google Scholar 

  17. Moerner, W. E. Single-photon sources based on single molecules in solids. New J. Phys. 6, 88 (2004).

    Article  Google Scholar 

  18. Nirmal, M. et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804 (1996).

    Article  CAS  Google Scholar 

  19. Empedocles, S. A., Norris, D. J. & Bawendi, M. G. Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots. Phys. Rev. Lett. 77, 3873–3876 (1996).

    Article  CAS  Google Scholar 

  20. Bischof, T. S., Correa, R. E., Rosenberg, D., Dauler, E. A. & Bawendi, M. G. Measurement of emission lifetime dynamics and biexciton emission quantum yield of individual InAs colloidal nanocrystals. Nano Lett. 14, 6787–6791 (2014).

    Article  CAS  Google Scholar 

  21. Protasenko, V. V., Hull, K. L. & Kuno, M. Disorder-induced optical heterogeneity in single CdSe nanowires. Adv. Mater. 17, 2942–2949 (2005).

    Article  CAS  Google Scholar 

  22. Efros, Al. L. & Rosen, M. Random telegraph signal in the photoluminescence intensity of a single quantum dot. Phys. Rev. Lett. 78, 1110–1113 (1997).

    Article  CAS  Google Scholar 

  23. Efros, Al. L. Nanocrystals: almost always bright. Nature Mater. 7, 612–613 (2008).

    Article  CAS  Google Scholar 

  24. Schmitt-Rink, S., Miller, D. A. B. & Chemla, D. S. Theory of the linear and nonlinear optical properties of semiconductor microcrystallites. Phys. Rev. B 35, 8113–8125 (1987).

    Article  CAS  Google Scholar 

  25. Kuno, M., Fromm, D. P., Hamann, H. F., Gallagher, A. & Nesbitt, D. J. Nonexponential 'blinking' kinetics of single CdSe quantum dots: a universal power law behavior. J. Chem. Phys. 112, 3117–3120 (2000).

    Article  CAS  Google Scholar 

  26. Chepic, D. I. et al. Auger ionization of semiconductor quantum drops in a glass matrix. J. Lumines. 47, 113–127 (1990).

    Article  Google Scholar 

  27. Kuno, M., Fromm, D. P., Hamann, H. F., Gallagher, A. & Nesbitt, D. J. 'On/off' fluorescence intermittency of single semiconductor quantum dots. J. Chem. Phys. 115, 1028–1040 (2001).

    Article  CAS  Google Scholar 

  28. Scher, H. & Montroll, E. W. Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B 12, 2455–2477 (1975).

    Article  CAS  Google Scholar 

  29. Shimizu, K. T. et al. Blinking statistics in single semiconductor nanocrystal quantum dots. Phys. Rev. B 63, 205316 (2001).

    Article  Google Scholar 

  30. Zhao, J., Nair, G., Fisher, B. R. & Bawendi, M. G. Challenge to the charging model of semiconductor-nanocrystal fluorescence intermittency from off-state quantum yields and multiexciton blinking. Phys. Rev. Lett. 104, 157403 (2010).

    Article  Google Scholar 

  31. Frantsuzov, P. A. & Marcus, R. A. Explanation of quantum dot blinking without the long-lived trap hypothesis. Phys. Rev. B 72, 155321 (2005).

    Article  Google Scholar 

  32. Tang, J. & Marcus, R. A. Diffusion-controlled electron transfer processes and power-law statistics of fluorescence intermittency of nanoparticles. Phys. Rev. Lett. 95, 107401 (2005).

    Article  Google Scholar 

  33. Mahler, B. et al. Towards non-blinking colloidal quantum dots. Nature Mater. 7, 659–664 (2008).

    Article  CAS  Google Scholar 

  34. Chen, Y. et al. 'Giant' multishell CdSe nanocrystal quantum dots with suppressed blinking. J. Am. Chem. Soc. 130, 5026–5027 (2008).

    Article  CAS  Google Scholar 

  35. Galland, C. et al. Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature 479, 203–207 (2011).

    Article  CAS  Google Scholar 

  36. Javaux, C. et al. Thermal activation of non-radiative Auger recombination in charged colloidal nanocrystals. Nature Nanotech. 8, 206–212 (2013).

    Article  CAS  Google Scholar 

  37. Rosen, S., Schwartz, O. & Oron, D. Transient fluorescence of the off state in blinking CdSe/CdS/ZnS semiconductor nanocrystals is not governed by Auger recombination. Phys. Rev. Lett. 104, 157404 (2010).

    Article  Google Scholar 

  38. Frantsuzov, P., Kuno, M., Janko, B. & Marcus, R. A. Universal emission intermittency in quantum dots, nanorods and nanowires. Nature Phys. 4, 519–522 (2008).

    Article  Google Scholar 

  39. Frantsuzov, P. A., Sandor, V.-K. & Boldizsar, J. Model of fluorescence intermittency of single colloidal semiconductor quantum dots using multiple recombination centers. Phys. Rev. Lett. 103, 207402 (2009).

    Article  Google Scholar 

  40. Tang, J. & Marcus, R. A. Mechanisms of fluorescence blinking in semiconductor nanocrystal quantum dots. J. Chem. Phys. 123, 054704 (2005).

    Article  Google Scholar 

  41. Osad'ko, I. S. Model for power-law statistics in blinking photoluminescence of single semiconductor nanocrystals. Chem. Phys. 316, 99–107 (2005).

    Article  CAS  Google Scholar 

  42. Osad'ko, I. S. Power-law statistics of intermittent photoluminescence in single semiconductor nanocrystals. JETP Lett. 79, 416–419 (2004).

    Article  CAS  Google Scholar 

  43. Krauss, T. D. & Peterson, J. J. Bright future for fluorescence blinking in semiconductor nanocrystals. J. Phys. Chem. Lett. 2010, 1377–1382 (2010).

    Article  Google Scholar 

  44. Pelton, M., Grier, D. G. & Guyot-Sionnest, P. Characterizing quantum-dot blinking using noise power spectra. Appl. Phys. Lett. 85, 819–821 (2004).

    Article  CAS  Google Scholar 

  45. Qin, W. & Guyot-Sionnest, P. Evidence for the role of holes in blinking: negative and oxidized CdSe/CdS dots. ACS Nano 6, 9125–9132 (2012).

    Article  CAS  Google Scholar 

  46. Jha, P. P. & Guyot-Sionnest, P. Electrochemical switching of the photoluminescence of single quantum dots. J. Phys. Chem. C 114, 21138–21141 (2010).

    Article  CAS  Google Scholar 

  47. Qin, W., Liu, H. & Guyot-Sionnest, P. Small bright charged colloidal quantum dots. ACS Nano 8, 283–291 (2014).

    Article  CAS  Google Scholar 

  48. Fomenko, V. & Nesbitt, D. J. Solution control of radiative and nonradiative lifetimes: a novel contribution to quantum dot blinking suppression. Nano Lett. 8, 287–293 (2008).

    Article  CAS  Google Scholar 

  49. Cragg, G. E. & Efros, Al. L. Suppression of Auger processes in confined structures. Nano Lett. 10, 313–317 (2010).

    Article  CAS  Google Scholar 

  50. Kharchenko, V. A. & Rosen, M. Auger relaxation processes in quantum dots and quantum wells. J. Lumines. 70, 158–169 (1996).

    Article  CAS  Google Scholar 

  51. Liu, F. et al. Spin dynamics of negatively charged excitons in CdSe/CdS colloidal nanocrystals. Phys. Rev. B 88, 035302 (2013).

    Article  Google Scholar 

  52. Shabaev, A., Rodina, A. V. & Efros, Al. L. Fine structure of the band edge excitons and trions in CdSe/CdS core/shell nanocrystals. Phys. Rev. B 86, 205311 (2012).

    Article  Google Scholar 

  53. Raino, G. et al. Probing the wave function delocalization in CdSe/CdS dot-in-rod nanocrystals by time- and temperature-resolved spectroscopy. ACS Nano 5, 4031–4036 (2011).

    Article  CAS  Google Scholar 

  54. Garcia-Santamaria, F. et al. Suppressed Auger recombination in “giant” nanocrystals boosts optical gain performance. Nano Lett. 9, 3482–3488 (2009).

    Article  CAS  Google Scholar 

  55. Spinicelli, P. et al. Bright and grey states in CdSe–CdS nanocrystals exhibiting strongly reduced blinking. Phys. Rev. Lett. 102, 136801 (2009).

    Article  CAS  Google Scholar 

  56. Vaxenburg, R., Rodina, A. V., Lifshitz, E. & Efros, Al. L. Biexciton Auger recombination in CdSe/CdS core/shell semiconductor nanocrystals. Nano Lett. 16, 2503–2511 (2016).

    Article  CAS  Google Scholar 

  57. Park, Y. S., Bae, W. K., Pietryga, J. M. & Klimov, V. I. Auger recombination of biexcitons and negative and positive trions in individual quantum dots. ACS Nano 8, 7288–7296 (2014).

    Article  CAS  Google Scholar 

  58. Bae, W. K. et al. Controlled alloying of the core–shell interface in CdSe/CdS quantum dots for suppression of Auger recombination. ACS Nano 7, 3411–3419 (2013).

    Article  CAS  Google Scholar 

  59. Park, Y. S., Bae, W. K., Padilha, L. A., Pietryga, J. M. & Klimov, V. I. Effect of the core/shell interface on Auger recombination evaluated by single-quantum-dot spectroscopy. Nano Lett. 14, 396–402 (2014).

    Article  CAS  Google Scholar 

  60. Nasilowski, M., Spinicelli, P., Patriarche, G. & Dubertret, B. Gradient CdSe/CdS quantum dots with room temperature biexciton unity quantum yield. Nano Lett. 15, 3953–3958 (2015).

    Article  CAS  Google Scholar 

  61. Shimizu, K. T., Woo, W. K., Fisher, B. R., Eisler, H. J. & Bawendi, M. G. Surface-enhanced emission from single semiconductor nanocrystals. Phys. Rev. Lett. 89, 117401 (2002).

    Article  CAS  Google Scholar 

  62. Chen, O. et al. Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nature Mater. 12, 445–451 (2013).

    Article  CAS  Google Scholar 

  63. Qin, H. et al. Single-dot spectroscopy of zinc-blende CdSe/CdS core/shell nanocrystals: nonblinking and correlation with ensemble measurements. J. Am. Chem. Soc. 136, 179–187 (2014).

    Article  CAS  Google Scholar 

  64. Pelton, M., Smith, G., Scherer, N. F. & Marcus, R. A. Evidence for a diffusion-controlled mechanism for fluorescence blinking of colloidal quantum dots. Proc. Natl Acad. Sci. USA 104, 14249–14254 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank C. Kagan, K. Kuno and R. Vaxenburg for help with figure preparation. Al.L.E. acknowledges the financial support of the Office of Naval Research (ONR) through the Naval Research Laboratory Basic Research Program. D.J.N. acknowledges support for this work from the National Science Foundation (CHE1266416, PHYS1125844), with additional support from the Department of Energy, Office of Basic Energy Sciences (DE-FG02-09ER16021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander L. Efros.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efros, A., Nesbitt, D. Origin and control of blinking in quantum dots. Nature Nanotech 11, 661–671 (2016). https://doi.org/10.1038/nnano.2016.140

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.140

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing