Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A kilobyte rewritable atomic memory


The advent of devices based on single dopants, such as the single-atom transistor1, the single-spin magnetometer2,3 and the single-atom memory4, has motivated the quest for strategies that permit the control of matter with atomic precision. Manipulation of individual atoms by low-temperature scanning tunnelling microscopy5 provides ways to store data in atoms, encoded either into their charge state6,7, magnetization state8,9,10 or lattice position11. A clear challenge now is the controlled integration of these individual functional atoms into extended, scalable atomic circuits. Here, we present a robust digital atomic-scale memory of up to 1 kilobyte (8,000 bits) using an array of individual surface vacancies in a chlorine-terminated Cu(100) surface. The memory can be read and rewritten automatically by means of atomic-scale markers and offers an areal density of 502 terabits per square inch, outperforming state-of-the-art hard disk drives by three orders of magnitude. Furthermore, the chlorine vacancies are found to be stable at temperatures up to 77 K, offering the potential for expanding large-scale atomic assembly towards ambient conditions.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hopping mechanism of a Cl vacancy on chlorinated Cu(100).
Figure 2: Data-encoding principle.
Figure 3: Kilobyte atomic memory.
Figure 4: Thermal stability and vacancy–vacancy interactions.


  1. Fuechsle, M. et al. Spectroscopy of few-electron single-crystal silicon quantum dots. Nature Nanotech. 5, 502–505 (2010).

    Article  CAS  Google Scholar 

  2. Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    Article  CAS  Google Scholar 

  3. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    Article  CAS  Google Scholar 

  4. Schirm, C. et al. A current-driven single-atom memory. Nature Nanotech. 8, 645–648 (2013).

    Article  CAS  Google Scholar 

  5. Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990).

    Article  CAS  Google Scholar 

  6. Repp, J., Meyer, G., Olsson, F. E. & Persson, M. Controlling the charge state of individual gold adatoms. Science 305, 493–495 (2004).

    Article  CAS  Google Scholar 

  7. Eom, D., Moon, C.-Y. & Koo, J.-Y. Switching the charge state of individual surface atoms at Si(111)-√3 × √3:B surfaces. Nano Lett. 15, 398–402 (2015).

    Article  CAS  Google Scholar 

  8. Loth, S., Baumann, S., Lutz, C. P., Eigler, D. M. & Heinrich, A. J. Bistability in atomic-scale antiferromagnets. Science 335, 196–199 (2012).

    Article  CAS  Google Scholar 

  9. Khajetoorians, A. A. et al. Current-driven spin dynamics of artificially constructed quantum magnets. Science 339, 55–59 (2013).

    Article  CAS  Google Scholar 

  10. Spinelli, A., Bryant, B., Delgado, F., Fernández-Rossier, J. & Otte, A. F. Imaging of spin waves in atomically designed nanomagnets. Nature Mater. 13, 782–785 (2014).

    Article  CAS  Google Scholar 

  11. Bennewitz, R. et al. Atomic scale memory at a silicon surface. Nanotechnology 13, 499–502 (2002).

    Article  CAS  Google Scholar 

  12. Crommie, M. F., Lutz, C. P. & Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. Science 262, 218–220 (1993).

    Article  CAS  Google Scholar 

  13. Heinrich, A. J., Lutz, C. P., Gupta, J. A. & Eigler, D. M. Molecule cascades. Science 298, 1381–1387 (2002).

    Article  CAS  Google Scholar 

  14. Khajetoorians, A. A., Wiebe, J., Chilian, B. & Wiesendanger, R. Realizing all-spin-based logic operations atom by atom. Science 332, 1062–1064 (2011).

    Article  CAS  Google Scholar 

  15. Gomes, K. K., Mar, W., Ko, W., Guinea, F. & Manoharan, H. C. Designer Dirac fermions and topological phases in molecular graphene. Nature 483, 306–310 (2012).

    Article  CAS  Google Scholar 

  16. Ebert, P., Lagally, M. G. & Urban, K. Scanning-tunneling-microscope tip-induced migration of vacancies on GaP(110). Phys. Rev. Lett. 70, 1437–1440 (1993).

    Article  CAS  Google Scholar 

  17. Schuler, B. et al. Effect of electron–phonon interaction on the formation of one-dimensional electronic states in coupled Cl vacancies. Phys. Rev. B 91, 235443 (2015).

    Article  Google Scholar 

  18. Li, Z. et al. Lateral manipulation of atomic vacancies in ultrathin insulating films. ACS Nano 9, 5318–5325 (2015).

    Article  CAS  Google Scholar 

  19. Nakakura, C. Y., Zheng, G. & Altman, E. I. Atomic-scale mechanisms of the halogenation of Cu(100). Surf. Sci. 401, 173–184 (1998).

    Article  CAS  Google Scholar 

  20. Huemann, S. et al. X-ray diffraction and STM study of reactive surfaces under electrochemical control: Cl and I on Cu(100). J. Phys. Chem. B 110, 24955–24963 (2006).

    Article  CAS  Google Scholar 

  21. Migani, A. & Illas, F. A systematic study of the structure and bonding of halogens on low-index transition metal surfaces. J. Phys. Chem. B 110, 11894–11906 (2006).

    Article  CAS  Google Scholar 

  22. Suleiman, I. A. et al. Interaction of chlorine and oxygen with the Cu(100) surface. J. Phys. Chem. C 114, 19048–19054 (2010).

    Article  CAS  Google Scholar 

  23. Celotta, R. J. et al. Invited article: autonomous assembly of atomically perfect nanostructures using a scanning tunneling microscope. Rev. Sci. Instrum. 85, 121301 (2014).

    Article  Google Scholar 

  24. Rademaker, L., Pramudya, Y., Zaanen, J. & Dobrosavljević, V. Influence of long-range interactions on charge ordering phenomena on a square lattice. Phys. Rev. E 88, 032121 (2013).

    Article  Google Scholar 

  25. Rost, M. J. et al. Scanning probe microscopes go video rate and beyond. Rev. Sci. Instrum. 76, 053710 (2005).

    Article  Google Scholar 

  26. Feynman, R. P. There's plenty of room at the bottom. Eng. Sci. 23, 22–36 (1960).

    Google Scholar 

  27. Kuhn, H. W. The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 2, 83–97 (1955).

    Article  Google Scholar 

  28. Hart, P., Nilsson, N. & Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4, 100–107 (1968).

    Article  Google Scholar 

  29. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

Download references


The authors thank A.J. Heinrich for discussions. This work was supported by the Netherlands Organisation for Scientific Research (NWO/OCW), as part of the Frontiers of Nanoscience program, the Foundation for Fundamental Research on Matter (FOM), and by the Kavli Foundation. J.F.R. and J.L.L. acknowledge financial support by Marie-Curie-ITN grant no. 607904-SPINOGRAPH. J.F.R. acknowledges financial support from MEC-Spain (grant no. FIS2013-47328-C2-2-P) and Generalitat Valenciana (PROMETEO 2012/011).

Author information

Authors and Affiliations



F.E.K. and E.F. developed the vacancy movement procedure. M.P.R., F.E.K. and A.F.O. programmed the autonomous vacancy manipulation. J.G., M.P.R. and R.T. performed the measurements at 77 K. J.L.L. and J.F.-R. performed the DFT and Monte Carlo calculations. A.F.O. devised the experiment and supervised the research. All authors discussed the results and contributed to writing the manuscript.

Corresponding author

Correspondence to A. F. Otte.

Ethics declarations

Competing interests

The authors have filed a Dutch patent application (NL2016335) for the subject matter described in this manuscript.

Supplementary information

Supplementary information

Supplementary information (PDF 527 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kalff, F., Rebergen, M., Fahrenfort, E. et al. A kilobyte rewritable atomic memory. Nature Nanotech 11, 926–929 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research