Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A nanomesh scaffold for supramolecular nanowire optoelectronic devices

Abstract

Supramolecular organic nanowires are ideal nanostructures for optoelectronics because they exhibit both efficient exciton generation as a result of their high absorption coefficient and remarkable light sensitivity due to the low number of grain boundaries and high surface-to-volume ratio. To harvest photocurrent directly from supramolecular nanowires it is necessary to wire them up with nanoelectrodes that possess different work functions. However, devising strategies that can connect multiple nanowires at the same time has been challenging. Here, we report a general approach to simultaneously integrate hundreds of supramolecular nanowires of N,N′-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8) in a hexagonal nanomesh scaffold with asymmetric nanoelectrodes. Optimized PTCDI-C8 nanowire photovoltaic devices exhibit a signal-to-noise ratio approaching 107, a photoresponse time as fast as 10 ns and an external quantum efficiency >55%. This nanomesh scaffold can also be used to investigate the fundamental mechanism of photoelectrical conversion in other low-dimensional semiconducting nanostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of a vertical-channel nanomesh scaffold with asymmetrical and tunable contact.
Figure 2: The photovoltaic effect of PTCDI-C8 supramolecular nanowires fully covering a bare nanomesh scaffold.
Figure 3: The photovoltaic effect of PTCDI-C8 supramolecular nanowires on a P3HT-modified nanomesh scaffold.
Figure 4: Device engineering with different hole-transporting layers.

Similar content being viewed by others

References

  1. Hoeben, F. J. M., Jonkheijm, P., Meijer, E. W. & Schenning, A. About supramolecular assemblies of π-conjugated systems. Chem. Rev. 105, 1491–1546 (2005).

    Article  CAS  Google Scholar 

  2. Lee, C. C., Grenier, C., Meijer, E. W. & Schenning, A. Preparation and characterization of helical self-assembled nanofibers. Chem. Soc. Rev. 38, 671–683 (2009).

    Article  CAS  Google Scholar 

  3. Chen, Z. J., Lohr, A., Saha-Moller, C. R. & Wurthner, F. Self-assembled π-stacks of functional dyes in solution: structural and thermodynamic features. Chem. Soc. Rev. 38, 564–584 (2009).

    Article  CAS  Google Scholar 

  4. Jain, A. & George, S. J. New directions in supramolecular electronics. Mater. Today 18, 206–214 (2015).

    Article  CAS  Google Scholar 

  5. Jiang, L., Fu, Y., Li, H. & Hu, W. Single-crystalline, size, and orientation controllable nanowires and ultralong microwires of organic semiconductor with strong photoswitching property. J. Am. Chem. Soc. 130, 3937–3941 (2008).

    Article  CAS  Google Scholar 

  6. Marty, R. et al. Hierarchically structured microfibers of “single stack” perylene bisimide and quaterthiophene nanowires. ACS Nano 7, 8498–8508 (2013).

    Article  CAS  Google Scholar 

  7. Wei, L., Yao, J. N. & Fu, H. B. Solvent-assisted self-assembly of fullerene into single-crystal ultrathin microribbons as highly sensitive UV-visible photodetectors. ACS Nano 7, 7573–7582 (2013).

    Article  CAS  Google Scholar 

  8. Wicklein, A., Ghosh, S., Sommer, M., Würthner, F. & Thelakkat, M. Self-assembly of semiconductor organogelator nanowires for photoinduced charge separation. ACS Nano 3, 1107–1114 (2009).

    Article  CAS  Google Scholar 

  9. Che, Y. et al. Interfacial engineering of organic nanofibril heterojunctions into highly photoconductive materials. J. Am. Chem. Soc. 133, 1087–1091 (2011).

    Article  CAS  Google Scholar 

  10. Tian, B. Z. et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–890 (2007).

    Article  CAS  Google Scholar 

  11. Haedler, A. T. et al. Long-range energy transport in single supramolecular nanofibres at room temperature. Nature 523, 196–199 (2015).

    Article  CAS  Google Scholar 

  12. Garnett, E. & Yang, P. D. Light trapping in silicon nanowire solar cells. Nano Lett. 10, 1082–1087 (2010).

    Article  CAS  Google Scholar 

  13. Briseno, A. L. et al. Fabrication of field-effect transistors from hexathiapentacene single-crystal nanowires. Nano Lett. 7, 668–675 (2007).

    Article  CAS  Google Scholar 

  14. Briseno, A. L. et al. Perylenediimide nanowires and their use in fabricating field-effect transistors and complementary inverters. Nano Lett. 7, 2847–2853 (2007).

    Article  CAS  Google Scholar 

  15. An, B. K., Gierschner, J. & Park, S. Y. π-Conjugated cyanostilbene derivatives: a unique self-assembly motif for molecular nanostructures with enhanced emission and transport. Accounts Chem. Res. 45, 544–554 (2012).

    Article  CAS  Google Scholar 

  16. Walker, B. J., Dorn, A., Bulovic, V. & Bawendi, M. G. Color-selective photocurrent enhancement in coupled J-aggregate/nanowires formed in solution. Nano Lett. 11, 2655–2659 (2011).

    Article  CAS  Google Scholar 

  17. Bredas, J. L., Norton, J. E., Cornil, J. & Coropceanu, V. Molecular understanding of organic solar cells: the challenges. Accounts Chem. Res. 42, 1691–1699 (2009).

    Article  CAS  Google Scholar 

  18. Wurthner, F. & Meerholz, K. Systems chemistry approach in organic photovoltaics. Chem. Eur. J. 16, 9366–9373 (2010).

    Article  Google Scholar 

  19. Palmer, L. C. & Stupp, S. I. Molecular self-assembly into one-dimensional nanostructures. Accounts Chem. Res. 41, 1674–1684 (2008).

    Article  CAS  Google Scholar 

  20. Shao, H., Nguyen, T., Romano, N. C., Modarelli, D. A. & Parquette, J. R. Self-assembly of 1-D n-type nanostructures based on naphthalene diimide-appended dipeptides. J. Am. Chem. Soc. 131, 16374–16376 (2009).

    Article  CAS  Google Scholar 

  21. Balakrishnan, K. et al. Nanobelt self-assembly from an organic n-type semiconductor: propoxyethyl-PTCDI. J. Am. Chem. Soc. 127, 10496–10497 (2005).

    Article  CAS  Google Scholar 

  22. Tovar, J. D. Supramolecular construction of optoelectronic biomaterials. Acc. Chem. Res. 46, 1527–1537 (2013).

    Article  CAS  Google Scholar 

  23. Babu, S. S., Praveen, V. K. & Ajayaghosh, A. Functional π-gelators and their applications. Chem. Rev. 114, 1973–2129 (2014).

    Article  CAS  Google Scholar 

  24. Gorl, D., Zhang, X., Stepanenko, V. & Wurthner, F. Supramolecular block copolymers by kinetically controlled co-self-assembly of planar and core-twisted perylene bisimides. Nature Commun. 6, 7006 (2015).

    Article  Google Scholar 

  25. Gemayel, M. E. et al. Tuning the photoresponse in organic field-effect transistors. J. Am. Chem. Soc. 134, 2429–2433 (2012).

    Article  CAS  Google Scholar 

  26. Sagade, A. A. et al. High-mobility field effect transistors based on supramolecular charge transfer nanofibres. Adv. Mater. 25, 559–564 (2013).

    Article  CAS  Google Scholar 

  27. Hollamby, M. J. et al. Directed assembly of optoelectronically active alkyl-π-conjugated molecules by adding n-alkanes or π-conjugated species. Nature Chem. 6, 690–696 (2014).

    Article  CAS  Google Scholar 

  28. Zhang, Y. et al. Organic single-crystalline p−n junction nanoribbons. J. Am. Chem. Soc. 132, 11580–11584 (2010).

    Article  CAS  Google Scholar 

  29. Cui, Q. H. et al. Coaxial organic p-n heterojunction nanowire arrays: one-step synthesis and photoelectric properties. Adv. Mater. 24, 2332–2336 (2012).

    Article  CAS  Google Scholar 

  30. Zhang, W. et al. Supramolecular linear heterojunction composed of graphite-like semiconducting nanotubular segments. Science 334, 340–343 (2011).

    Article  CAS  Google Scholar 

  31. Faramarzi, V. et al. Light-triggered self-construction of supramolecular organic nanowires as metallic interconnects. Nature Chem. 4, 485–490 (2012).

    Article  CAS  Google Scholar 

  32. Moulin, E., Cid, J. J. & Giuseppone, N. Advances in supramolecular electronics - from randomly self-assembled nanostructures to addressable self-organized interconnects. Adv. Mater. 25, 477–487 (2013).

    Article  CAS  Google Scholar 

  33. Kim, B. J., Yu, H., Oh, J. H., Kang, M. S. & Cho, J. H. Electrical transport through single nanowires of dialkyl perylene diimide. J. Phys. Chem. C 117, 10743–10749 (2013).

    Article  CAS  Google Scholar 

  34. Hulteen, J. C. & Vanduyne, R. P. Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces. J. Vac. Sci. Technol. A 13, 1553–1558 (1995).

    Article  Google Scholar 

  35. Sinitskii, A. & Tour, J. M. Patterning graphene through the self-assembled templates: toward periodic two-dimensional graphene nanostructures with semiconductor properties. J. Am. Chem. Soc. 132, 14730–14732 (2010).

    Article  CAS  Google Scholar 

  36. Gao, T. C., Wang, B. M., Ding, B., Lee, J. K. & Leu, P. W. Uniform and ordered copper nanomeshes by microsphere lithography for transparent electrodes. Nano Lett. 14, 2105–2110 (2014).

    Article  CAS  Google Scholar 

  37. Gao, P. Q. et al. Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing. Nano Lett. 15, 4591–4598 (2015).

    Article  CAS  Google Scholar 

  38. Bao, Z. et al. Toward controllable self-assembly of microstructures: selective functionalization and fabrication of patterned spheres. Chem. Mater. 14, 24–26 (2002).

    Article  CAS  Google Scholar 

  39. Cao, Q. et al. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nature Nanotech. 8, 180–186 (2013).

    Article  CAS  Google Scholar 

  40. Dintinger, J., Klein, S. & Ebbesen, T. W. Molecule-surface plasmon interactions in hole arrays: enhanced absorption, refractive index changes, and all-optical switching. Adv. Mater. 18, 1267–1270 (2006).

    Article  CAS  Google Scholar 

  41. Parker, I. D. & Kim, H. H. Fabrication of polymer light-emitting-diodes using doped silicon electrodes. Appl. Phys. Lett. 64, 1774–1776 (1994).

    Article  CAS  Google Scholar 

  42. Baeg, K. J., Binda, M., Natali, D., Caironi, M. & Noh, Y. Y. Organic light detectors: photodiodes and phototransistors. Adv. Mater. 25, 4267–4295 (2013).

    Article  CAS  Google Scholar 

  43. Yu, H., Bao, Z. A. & Oh, J. H. High-performance phototransistors based on single-crystalline n-channel organic nanowires and photogenerated charge-carrier behaviors. Adv. Funct. Mater. 23, 629–639 (2013).

    Article  CAS  Google Scholar 

  44. Levermore, P. A., Jin, R., Wang, X. H., de Mello, J. C. & Bradley, D. D. C. Organic light-emitting diodes based on poly(9,9-dioctylfluorene-co-bithiophene) (F8T2). Adv. Funct. Mater. 19, 950–957 (2009).

    Article  CAS  Google Scholar 

  45. Lei, T., Dou, J. H. & Pei, J. Influence of alkyl chain branching positions on the hole mobilities of polymer thin-film transistors. Adv. Mater. 24, 6457–6461 (2012).

    Article  CAS  Google Scholar 

  46. Li, Y. F. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Accounts Chem. Res. 45, 723–733 (2012).

    Article  CAS  Google Scholar 

  47. Shaw, P. E., Ruseckas, A. & Samuel, I. D. W. Exciton diffusion measurements in poly(3-hexylthiophene). Adv. Mater. 20, 3516–3520 (2008).

    Article  CAS  Google Scholar 

  48. Najafov, H., Lee, B., Zhou, Q., Feldman, L. C. & Podzorov, V. Observation of long-range exciton diffusion in highly ordered organic semiconductors. Nature Mater. 9, 938–943 (2010).

    Article  CAS  Google Scholar 

  49. Pinto, R. M. et al. Effect of molecular stacking on exciton diffusion in crystalline organic semiconductors. J. Am. Chem. Soc. 137, 7104–7110 (2015).

    Article  CAS  Google Scholar 

  50. Sung, J., Kim, P., Fimmel, B., Wurthner, F. & Kim, D. Direct observation of ultrafast coherent exciton dynamics in helical π-stacks of self-assembled perylene bisimides. Nature Commun. 6, 8646 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Liscio for help with XRD analysis. This work was financially supported by European Commission through the European Research Council project SUPRAFUNCTION (grant agreement no. 257305) and the Marie Curie ITN project iSwitch (grant agreement no. 642196), the ANR Equipex Union (ANR-10-EQPX-52-01), the Labex projects CSC (ANR-10-LABX-0026 CSC) and Nanostructures in Interaction with their Environment (ANR-11-LABX-0058 NIE) within the Investissement d'Avenir program (ANR-10- 120 IDEX-0002-02), and the International Center for Frontier Research in Chemistry (icFRC).

Author information

Authors and Affiliations

Authors

Contributions

L.Z., E.O. and P.S. conceived the experiment and designed the study. L.Z. performed the experiments and developed the fabrication method. X.Z. performed SEM characterization. E.P. and G.B. undertook the transient response analysis. L.Z., E.O., S.L. and A.K. measured the optoelectronic devices. L.Z., E.O., T.W.E. and P.S. co-wrote the paper. All authors discussed the results and contributed to the interpretation of data as well as to the editing of the manuscript.

Corresponding authors

Correspondence to Emanuele Orgiu or Paolo Samorì.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2597 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhong, X., Pavlica, E. et al. A nanomesh scaffold for supramolecular nanowire optoelectronic devices. Nature Nanotech 11, 900–906 (2016). https://doi.org/10.1038/nnano.2016.125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.125

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing