Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reading the primary structure of a protein with 0.07 nm3 resolution using a subnanometre-diameter pore

Abstract

The primary structure of a protein consists of a sequence of amino acids and is a key factor in determining how a protein folds and functions. However, conventional methods for sequencing proteins, such as mass spectrometry and Edman degradation, suffer from short reads and lack sensitivity, so alternative approaches are sought. Here, we show that a subnanometre-diameter pore, sputtered through a thin silicon nitride membrane, can be used to detect the primary structure of a denatured protein molecule. When a denatured protein immersed in electrolyte is driven through the pore by an electric field, measurements of a blockade in the current reveal nearly regular fluctuations, the number of which coincides with the number of residues in the protein. Furthermore, the amplitudes of the fluctuations are highly correlated with the volumes that are occluded by quadromers (four residues) in the primary structure. Each fluctuation, therefore, represents a read of a quadromer. Scrutiny of the fluctuations reveals that the subnanometre pore is sensitive enough to read the occluded volume that is related to post-translational modifications of a single residue, measuring volume differences of 0.07 nm3, but it is not sensitive enough to discriminate between the volumes of all twenty amino acids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detecting single proteins using a subnanopore.
Figure 2: Detecting amino acids in a single protein using a subnanopore.
Figure 3: Protein sequence analysis.
Figure 4: Testing the sensitivity of a subnanopore to molecular volume.

Similar content being viewed by others

References

  1. Wilhem, M. et al. Mass-spectrometry-based draft of the human proteome. Nature 509, 582–587 (2014).

    Article  Google Scholar 

  2. Altelaar, A. F. M., Munoz, J. & Heck, A. J. R. Next-generation proteomics: towards an integrative view of proteome dynamics. Nat. Rev. Genet. 14, 35–48 (2013).

    Article  CAS  Google Scholar 

  3. Chandramouli, K. & Qian, P.-Y. Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. Human Genom. Proteom. 2009, 239204 (2009).

    Google Scholar 

  4. Ohshiro, T. et al. Detection of post-translational modifications in single peptides using electron tunneling currents. Nature Nanotech. 9, 835–840 (2014).

    Article  CAS  Google Scholar 

  5. Movileanu, L., Howorka, S., Braha, O. & Bayley, H. Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nature Biotechnol. 18, 1091–1095 (2000).

    Article  CAS  Google Scholar 

  6. Mohammad, M. M., Prakash, S., Matouschek, A. & Movileanu, L. Controlling a single protein in a nanopore through electrostatic traps. J. Am. Chem. Soc. 130, 4081–4088 (2008).

    Article  CAS  Google Scholar 

  7. Talaga, D. S. & Li, J. Single-molecule protein unfolding in solid-state nanopores. J. Am. Chem. Soc. 131, 9287–9297 (2009).

    Article  CAS  Google Scholar 

  8. Wei, R., Gatterdam, V., Wieneke, R., Tampe, R. & Rant, U. Stochastic sensing of proteins with receptor-modified solid-state nanopores. Nature Nanotech. 7, 257–263 (2012).

    Article  CAS  Google Scholar 

  9. Freedman, K. J. et al. Chemical, thermal, and electric field-induced unfolding of single protein molecules studied using nanopores. Anal. Chem. 83, 5137–5144 (2011).

    Article  CAS  Google Scholar 

  10. Fologea, D., Ledden, B., McNabb, D. S. & Li, J. Electrical characterization of protein molecules by a solid-state nanopore. Appl. Phys. Lett. 91, 053901 (2007).

    Article  Google Scholar 

  11. Cressiot, B. et al. Protein transport through a narrow solid-state nanopore at high voltage: experiments and theory. ACS Nano 6, 6236–6243 (2012).

    Article  CAS  Google Scholar 

  12. Nelson, E. M., Kurz, V., Shim, J., Timp, W. & Timp, G. Using a nanopore for single molecule detection and single cell transfection. Analyst 137, 3020–3027 (2012).

    Article  CAS  Google Scholar 

  13. Nivala, J., Marks, D. B. & Akeson, M. Unfoldase-mediated protein translocation through an α-hemolysin nanopore. Nature Biotechnol. 31, 247–250 (2013).

    Article  CAS  Google Scholar 

  14. Rodriguez-Larrea, D. & Bayley, H. Multistep protein unfolding during nanopore translocation. Nature Nanotech. 8, 288–295 (2013).

    Article  CAS  Google Scholar 

  15. Rosen, C. B., Rodriguez-Larrea, D. & Bayley, H. Single-molecule site-specific detection of protein phosphorylation with a nanopore. Nature Biotechnol. 32, 179–181 (2014).

    Article  CAS  Google Scholar 

  16. Merstorf, C. et al. Wild type, mutant protein unfolding and phase transition detected by single-nanopore recording. ACS Chem. Biol. 7, 652–658 (2012).

    Article  CAS  Google Scholar 

  17. Nivala, J., Mulroney, L., Li, G., Schreiber, J. & Akeson, M. Discrimination among protein variants using an unfoldase-coupled nanopore. ACS Nano 8, 12365–12375 (2014).

    Article  CAS  Google Scholar 

  18. Laszlo, A. H. et al. Decoding long nanopore sequencing reads of natural DNA. Nature Biotechnol. 32, 829–833 (2014).

    Article  CAS  Google Scholar 

  19. Jain, M. et al. Improved data analysis for the MinION nanopore sequencer. Nature Methods 12, 351–356 (2015).

    Article  CAS  Google Scholar 

  20. Timp, W. et al. Think small: nanopores for sensing and synthesis. IEEE Access 2, 1396–1408 (2014).

    Article  Google Scholar 

  21. Laver, T. et al. Assessing the performance of the Oxford Nanopore Technologies MinION. Biomol. Detect. Quant. 3, 1–8 (2015).

    CAS  Google Scholar 

  22. Li, J., Fologea, D., Rollings, R. & Ledden, B. Characterization of protein unfolding with solid-state nanopores. Protein Pept. Lett. 21, 256–265 (2014).

    Article  CAS  Google Scholar 

  23. Sigalov, G., Comer, J., Timp, G. & Aksimentiev, A. Detection of DNA sequences using an alternating electric field in a nanopore capacitor. Nano Lett. 8, 56–63 (2008).

    Article  CAS  Google Scholar 

  24. Ho, C. et al. Electrolytic transport through a synthetic nanometer-diameter pore. Proc. Natl Acad. Sci. USA 102, 10445–10450 (2005).

    Article  CAS  Google Scholar 

  25. Ohtaki, H. & Radnai, T. Structure and dynamics of hydrated ions. Chem. Rev. 93, 1157–1204 (1993).

    Article  CAS  Google Scholar 

  26. Reynolds, J. A. & Tanford, C. Binding of dodecyl sulfate to proteins at high binding ratios. possible implications for the state of proteins in biological membranes. Proc. Natl Acad. Sci. USA 66, 1002–1003 (1970).

    Article  CAS  Google Scholar 

  27. Ibel, K. et al. Protein-decorated micelle structure of sodium dodecyl-sulfate-protein complexes as determined by neutron scattering. Eur. J. Biochem. 190, 311–318 (1990).

    Article  CAS  Google Scholar 

  28. Samso, M., Daban, J.-R., Hansen, S. & Jones, G. R. Evidence for sodium dodecyl sulfate/protein complexes adopting a necklace structure. Eur. J. Biochem. 232, 818–824 (1995).

    Article  CAS  Google Scholar 

  29. Mattice, W. L., Riser, J. M. & Clark, D. S. Conformational properties of the complexes formed by proteins and sodium dodecyl sulfate. Biochemistry 15, 4264–4272 (1976).

    Article  CAS  Google Scholar 

  30. Lundahl, P., Greijer, E., Sandberg, M., Cardell, S. & Eriksson, K. O. A model for ionic and hydrophobic interactions and hydrogen-bonding in sodium dodecyl sulfate-protein complexes. Biochim. Biophys. Acta 873, 20–26 (1986).

    Article  CAS  Google Scholar 

  31. Gudiksen, K. L., Gitlin, I., Moustakas, D. T. & Whitesides, G. M. Increasing the net charge and decreasing the hydrophobicity of bovine carbonic anhydrase decreases the rate of denaturation with sodium dodecyl sulfate. Biophys. J. 91, 298–310 (2006).

    Article  CAS  Google Scholar 

  32. Westerhuis, W. H. J., Sturgis, J. N. & Niederman, R. A. Reevaluation of the electrophoretic migration behavior of soluble globular proteins in the native and detergent-denatured states in polyacrylamide gels. Anal. Biochem. 284, 143–152 (2000).

    Article  CAS  Google Scholar 

  33. Nakayma, J.-I., Rice, J. C., Strahl, B. D., Allis, C. D. & Grewal, S. I. S. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113 (2001).

    Article  Google Scholar 

  34. Wang, Z. et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nature Genet. 40, 897–903 (2008).

    Article  CAS  Google Scholar 

  35. Shortle, D. & Ackerman, M. S. Persistence of native-like topology in a denatured protein in 8 M urea. Science 293, 487–489 (2001).

    Article  CAS  Google Scholar 

  36. Qin, Z. P., Zhe, J. A. & Wang, G. X. Effects of particle's off-axis position, shape, orientation and entry position on resistance changes of micro-Coulter counting devices. Meas. Sci. Technol. 22, 045804 (2011).

    Article  Google Scholar 

  37. Niedzwiecki, D. J., Grazul, J. & Movileanu, L. Single-molecule observation of protein adsorption onto an inorganic surface. J. Am. Chem. Soc. 132, 10816–10822 (2010).

    Article  CAS  Google Scholar 

  38. Székely, G. J. & Rizzo, M. L. A new test for multivariate normality. J. Multivar. Anal. 93, 58–80 (2005).

    Article  Google Scholar 

  39. Nelson, E. M., Li, H. & Timp, G. Direct, concurrent measurements of the forces and currents affecting DNA in a nanopore with comparable topography. ACS Nano 8, 5484–5493 (2014).

    Article  CAS  Google Scholar 

  40. Perkins, S. J. Protein volumes and hydration effects. Eur. J. Biochem. 157, 169–180 (1986).

    Article  CAS  Google Scholar 

  41. Timp, W., Comer, J. & Aksimentiev, A. DNA base-calling from a nanopore using a Viterbi algorithm. Biophys. J. 102, L37–L39 (2012).

    Article  CAS  Google Scholar 

  42. Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).

    Article  Google Scholar 

  43. Kolmogorov, M., Kennedy, E., Dong, Z., Timp, G. & Pevzner, P. Single-molecule protein identification by subnanopore sensors. Preprint at https://arxiv.org/abs/1604.02270v1 (2016).

  44. Barthel, J. Dr. Probe-High-resolution (S)TEM image simulation software. http://www.er-c.org/barthel/drprobe, version 1.6 (2015).

  45. Cowley, J. M. & Moodie, A. F. The scattering of electrons by atoms and crystals. I. a new theoretical approach. Acta. Cryst. 10, 609–619 (1957).

    Article  CAS  Google Scholar 

  46. Weickenmeier, A. & Kohl, H. Computation of absorptive form factors for high-energy electron diffraction. Acta Cryst. A 47, 590–597 (1991).

    Article  Google Scholar 

  47. Raillon, C., Granjon, P., Graf, M., Steinbocka, L. J. & Radenovic, A. Fast and automatic processing of multi-level events in nanopore translocation experiments. Nanoscale 4, 4916–4924 (2012).

    Article  CAS  Google Scholar 

  48. Kurz, V., Nelson, E. M., Shim, J. & Timp, G. Direct visualization of single-molecule translocations through synthetic nanopores comparable in size to a molecule. ACS Nano 7, 4057–4069 (2013).

    Article  CAS  Google Scholar 

  49. Grahame, D. C. The electrical double layer and the theory of electrocapillarity. Chem. Rev. 41, 441–501 (1947).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a grant from the National Science Foundation (DBI 1256052), the Keough–Hesburgh Professorship and the Walther Cancer Foundation. We gratefully acknowledge conversations with J. Barthel and critical readings of the manuscript by W. Timp and T. Tanaka.

Author information

Authors and Affiliations

Authors

Contributions

G.T. conceived the experiments. E.K. and Z.D. designed the experiments in consultation with G.T. E.K., Z.D. and C.T. performed the experiments and analysed the data. E.K. developed the algorithms used to analyse the current blockade data, in particular. G.T., E.K. and Z.D. co-wrote the manuscript, but all of the authors discussed the results and commented on it.

Corresponding author

Correspondence to Gregory Timp.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2758 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kennedy, E., Dong, Z., Tennant, C. et al. Reading the primary structure of a protein with 0.07 nm3 resolution using a subnanometre-diameter pore. Nature Nanotech 11, 968–976 (2016). https://doi.org/10.1038/nnano.2016.120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.120

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing