Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Measuring protein isoelectric points by AFM-based force spectroscopy using trace amounts of sample

Abstract

Protein charge at various pH and isoelectric point (pI) values is important in understanding protein function. However, often only trace amounts of unknown proteins are available and pI measurements cannot be obtained using conventional methods. Here, we show a method based on the atomic force microscope (AFM) to determine pI using minute quantities of proteins. The protein of interest is immobilized on AFM colloidal probes and the adhesion force of the protein is measured against a positively and a negatively charged substrate made by layer-by-layer deposition of polyelectrolytes. From the AFM force–distance curves, pI values with an estimated accuracy of ±0.25 were obtained for bovine serum albumin, myoglobin, fibrinogen and ribonuclease A over a range of 4.7–9.8. Using this method, we show that the pI of the ‘footprint’ of the temporary adhesive proteins secreted by the barnacle cyprid larvae of Amphibalanus amphitrite is in the range 9.6–9.7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The estimation of protein pI values using colloidal AFM-based force spectroscopy.
Figure 2: Estimation of pI values of model proteins.
Figure 3: Estimation of the pI value of cyprid footprint proteins using colloidal AFM-based force spectroscopy.

Similar content being viewed by others

References

  1. Righetti, P. G. & Caravaggio, T. Isoelectric points and molecular weights of proteins: a table. J. Chromatogr. A 127, 1–28 (1976).

    Article  CAS  Google Scholar 

  2. Hughes, A. J., Tentori, A. M. & Herr, A. E. Bistable isoelectric point photoswitching in green fluorescent proteins observed by dynamic immunoprobed isoelectric focusing. J. Am. Chem. Soc. 134, 17582–17591 (2012).

    Article  CAS  Google Scholar 

  3. Righetti, P. G. Determination of the isoelectric point of proteins by capillary isoelectric focusing. J. Chromatogr. A 1037, 491–499 (2004).

    Article  CAS  Google Scholar 

  4. Mohan, D. & Lee, C. S. Extension of separation range in capillary isoelectric focusing for resolving highly basic biomolecules. J. Chromatogr. A 979, 271–276 (2002).

    Article  CAS  Google Scholar 

  5. Shen, Y. & Smith, R. D. Proteomics based on high-efficiency capillary separations. Electrophoresis 23, 3106–3124 (2002).

    Article  CAS  Google Scholar 

  6. Righetti, P. G., Gelfi, C. & Conti, M. Protein purification: principles, high resolution methods, and applications. J. Chromatogr. B 699, 91–104 (1997).

    Article  CAS  Google Scholar 

  7. Pihlasalo, S., Auranen, L., Hanninen, P. & Harma, H. Method for estimation of protein isoelectric point. Anal. Chem. 84, 8253–8258 (2012).

    Article  CAS  Google Scholar 

  8. Callow, J. A. & Callow, M. E. Trends in the development of environmentally friendly fouling-resistant marine coatings. Nature Commun. 2, 244 (2011).

    Article  Google Scholar 

  9. Smith, C. Striving for purity: advances in protein purification. Nature Methods 2, 71–77 (2005).

    Article  CAS  Google Scholar 

  10. De, M. et al. Sensing of proteins in human serum using conjugates of nanoparticles and green fluorescent protein. Nature Chem. 1, 461–465 (2009).

    Article  CAS  Google Scholar 

  11. Yan, J. et al. Effect of proteins with different isoelectric points on the gene transfection efficiency mediated by stearic acid grafted chitosan oligosaccharide micelles. Mol. Pharm. 10, 2568–2577 (2013).

    Article  CAS  Google Scholar 

  12. Butt, H. J., Cappella, B. & Kappl, M. Force measurements with the atomic force microscope: technique, interpretation and applications. Surf. Sci. Rep. 59, 1–152 (2005).

    Article  CAS  Google Scholar 

  13. Lee, H., Scherer, N. F. & Messersmith, P. B. Single-molecule mechanics of mussel adhesion. Proc. Natl Acad. Sci. USA 103, 12999–13003 (2006).

    Article  CAS  Google Scholar 

  14. Beaussart, A. et al. Quantifying the forces guiding microbial cell adhesion using single-cell force spectroscopy. Nature Protocols 9, 1049–1055 (2014).

    Article  CAS  Google Scholar 

  15. Xu, L. C. & Siedlecki, C. A. Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials 28, 3273–3283 (2007).

    Article  CAS  Google Scholar 

  16. Yersin, A. et al. Interactions between synaptic vesicle fusion proteins explored by atomic force microscopy. Proc. Natl Acad. Sci. USA 100, 8736–8741 (2003).

    Article  CAS  Google Scholar 

  17. Vezenov, D. V., Noy, A., Rozsnyai, L. F. & Lieber, C. M. Force titrations and ionization state sensitive imaging of functional groups in aqueous solutions by chemical force microscopy. J. Am. Chem. Soc. 119, 2006–2015 (1997).

    Article  Google Scholar 

  18. Ahimou, F., Denis, F. A., Touhami, A. & Dufrêne, Y. F. Probing microbial cell surface charges by atomic force microscopy. Langmuir 18, 9937–9941 (2002).

    Article  CAS  Google Scholar 

  19. Zhu, X. et al. Polyion multilayers with precise surface charge control for antifouling. ACS Appl. Mater. Interfaces 7, 852–861 (2015).

    Article  CAS  Google Scholar 

  20. Zhu, X., Jańczewski, D., Lee, S. S. C., Teo, S. L. M. & Vancso, G. J. Cross-linked polyelectrolyte multilayers for marine antifouling applications. ACS Appl. Mater. Interfaces 5, 5961–5968 (2013).

    Article  CAS  Google Scholar 

  21. Barattin, R. & Voyer, N. Chemical modifications of AFM tips for the study of molecular recognition events. Chem. Commun. 13, 1513–1532 (2008).

    Article  Google Scholar 

  22. Patel, A. B. et al. Influence of architecture on the kinetic stability of molecular assemblies. J. Am. Chem. Soc. 126, 1318–1319 (2004).

    Article  CAS  Google Scholar 

  23. Steiner, P. et al. Interactions between NEEP21, GRIP1 and GluR2 regulate sorting and recycling of the glutamate receptor subunit GluR2. EMBO J. 24, 2873–2884 (2005).

    Article  CAS  Google Scholar 

  24. Roach, P., Farrar, D. & Perry, C. C. Interpretation of protein adsorption: surface-induced conformational changes. J. Am. Chem. Soc. 127, 8168–8173 (2005).

    Article  CAS  Google Scholar 

  25. Rabe, M., Verdes, D. & Seeger, S. Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface Sci. 162, 87–106 (2011).

    Article  CAS  Google Scholar 

  26. Liu, H. & Hu, N. Interaction between myoglobin and hyaluronic acid in their layer-by-layer assembly: quartz crystal microbalance and cyclic voltammetry studies. J. Phys. Chem. B 110, 14494–14502 (2006).

    Article  CAS  Google Scholar 

  27. Belfort, G. & Lee, C. S. Attractive and repulsive interactions between and within adsorbed ribonuclease A layers. Proc. Natl Acad. Sci. USA 88, 9146–9150 (1991).

    Article  CAS  Google Scholar 

  28. Merkel, R., Nassoy, P., Leung, A., Ritchie, K. & Evans, E. Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy. Nature 397, 50–53 (1999).

    Article  CAS  Google Scholar 

  29. Gergely, C. et al. Unbinding process of adsorbed proteins under external stress studied by atomic force microscopy spectroscopy. Proc. Natl Acad. Sci. USA 26, 10802–10807 (2000).

    Article  Google Scholar 

  30. Noy, A., Frisbie, C. D., Rozsnyai, L. F., Wrighton, M. S. & Lieber, C. M. Chemical force microscopy: exploiting chemically-modified tips to quantify adhesion, friction, and functional group distributions in molecular assemblies. J. Am. Chem. Soc. 117, 7943–7951 (1995).

    Article  CAS  Google Scholar 

  31. Frisbie, C. D., Rozsnyai, L. F., Noy, A., Wrighton, M. S. & Lieber, C. M. Functional group imaging by chemical force microscopy. Science 265, 2071–2073 (1994).

    Article  CAS  Google Scholar 

  32. Cappella, B. & Dietler, G. Force–distance curves by atomic force microscopy. Surf. Sci. Rep. 34, 1–104 (1999).

    Article  CAS  Google Scholar 

  33. Sui, X., Chen, Q., Hempenius, M. A. & Vancso, G. J. Probing the collapse dynamics of poly(N-isopropylacrylamide) brushes by AFM: effects of co-nonsolvency and grafting densities. Small 7, 1440–1447 (2011).

    Article  CAS  Google Scholar 

  34. Erikson, H. P. Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol. Proced. Online 11, 32–51 (2009).

    Article  Google Scholar 

  35. Guo, S. et al. Barnacle larvae exploring surfaces with variable hydrophilicity: influence of morphology and adhesion of ‘footprint’ proteins by AFM. ACS Appl. Mater. Interfaces 6, 13667–13676 (2014).

    Article  CAS  Google Scholar 

  36. Neihof, R. A. & Loeb, G. I. The surface charge of particulate matter in seawater. Limnol. Oceanogr. 17, 7–16 (1972).

    Article  CAS  Google Scholar 

  37. Rosenberg, M. & Kjelleberg, S. Hydrophobic interactions: role in bacterial adhesion. Adv. Microb. Ecol. 9, 353–393 (1986).

    Article  CAS  Google Scholar 

  38. Shi, H., Liu, J., Geng, J., Tang, B. Z. & Liu, B. Specific detection of integrin αvβ3 by light-up bioprobe with aggregation-induced emission characteristics. J. Am. Chem. Soc. 134, 9569–9572 (2012).

    Article  CAS  Google Scholar 

  39. Barua, S. et al. Particle shape enhances specificity of antibody-displaying nanoparticles. Proc. Natl Acad. Sci. USA 110, 3270–3275 (2013).

    Article  CAS  Google Scholar 

  40. Zhu, G., Mallery, S. R. & Schwendeman, S. P. Stabilization of proteins encapsulated in injectable poly (lactide-co-glycolide). Nature Biotechnol. 18, 52–57 (2000).

    Article  CAS  Google Scholar 

  41. Wasilewska, M., Adamczyk, Z. & Jachimska, B. Structure of fibrinogen in electrolyte solutions derived from dynamic light scattering (DLS) and viscosity measurements. Langmuir 25, 3698–3704 (2009).

    Article  CAS  Google Scholar 

  42. Scheraga, H. A. & Laskowski, M. J. The fibrinogen–fibrin conversion. Adv. Protein. Chem. 12, 1–131 (1957).

    Article  CAS  Google Scholar 

  43. Caulfield, J. P. & Farquhar, M. G. Distribution of anionic sites in glomerular basement membranes: their possible role in filtration and attachment. Proc. Natl Acad. Sci. USA 73, 1646–1650 (1976).

    Article  CAS  Google Scholar 

  44. Liu, Q. et al. Graphene and graphene oxide sheets supported on silica as versatile and high-performance adsorbents for solid-phase extraction. Angew. Chem. Int. Ed. 123, 6035–6039 (2011).

    Article  Google Scholar 

  45. Wright, A. T. & Anslyn, E. A. Differential receptor arrays and assays for solution-based molecular recognition. Chem. Soc. Rev. 35, 14–28 (2006).

    Article  CAS  Google Scholar 

  46. Wang, C. & Lucy, C. A. Oligomerized phospholipid bilayers as semipermanent coatings in capillary electrophoresis. Anal. Chem. 77, 2015–2021 (2005).

    Article  CAS  Google Scholar 

  47. Ravindra, R., Zhao, S., Gies, H. & Winter, R. Protein encapsulation in mesoporous silicate: the effects of confinement on protein stability, hydration, and volumetric properties. J. Am. Chem. Soc. 126, 12224–12225 (2004).

    Article  CAS  Google Scholar 

  48. Hutter, J. L. & Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64, 1868–1873 (1993).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Agency for Science, Technology and Research (A*STAR) for providing financial support under the Innovative Marine Antifouling Solutions (IMAS) program.

Author information

Authors and Affiliations

Authors

Contributions

G.J.V. supervised the project. D.J. and G.J.V. conceived the approach, evaluated the results and corrected the manuscript. S.G. conceived the approach, designed the experiments, analysed the data and wrote the paper. X.Z. designed the experiments and fabricated the surfaces. S.S.C.L. cultured the barnacle cyprids. T.H. contributed to the probe modification and discussion. S.L.M.T. evaluated and commented on the results. S.G. and X.Z. contributed equally to this work.

Corresponding authors

Correspondence to Dominik Jańczewski or G. Julius Vancso.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1328 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Zhu, X., Jańczewski, D. et al. Measuring protein isoelectric points by AFM-based force spectroscopy using trace amounts of sample. Nature Nanotech 11, 817–823 (2016). https://doi.org/10.1038/nnano.2016.118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.118

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research