Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum interference in an interfacial superconductor


The two-dimensional superconductor that forms at the interface between the complex oxides lanthanum aluminate (LAO) and strontium titanate (STO)1 has several intriguing properties2,3,4,5,6 that set it apart from conventional superconductors. Most notably, an electric field can be used to tune its critical temperature (Tc; ref. 7), revealing a dome-shaped phase diagram reminiscent of high-Tc superconductors8. So far, experiments with oxide interfaces have measured quantities that probe only the magnitude of the superconducting order parameter and are not sensitive to its phase. Here, we perform phase-sensitive measurements by realizing the first superconducting quantum interference devices (SQUIDs) at the LAO/STO interface. Furthermore, we develop a new paradigm for the creation of superconducting circuit elements, where local gates enable the in situ creation and control of Josephson junctions. These gate-defined SQUIDs are unique in that the entire device is made from a single superconductor with purely electrostatic interfaces between the superconducting reservoir and the weak link. We complement our experiments with numerical simulations and show that the low superfluid density of this interfacial superconductor results in a large, gate-controllable kinetic inductance of the SQUID. Our observation of robust quantum interference opens up a new pathway to understanding the nature of superconductivity at oxide interfaces.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Device description and V(Φ) oscillations.
Figure 2: I(Φ) oscillations and kinetic inductance in C-SQUIDs.
Figure 3: Tunable Josephson junctions in E-SQUIDs.
Figure 4: Controllable asymmetry in E-SQUIDs.


  1. Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007).

    CAS  Article  Google Scholar 

  2. Caviglia, A. D. et al. Tunable Rashba spin-orbit interaction at oxide interfaces. Phys. Rev. Lett. 104, 126803 (2010).

    CAS  Article  Google Scholar 

  3. Ben Shalom, M. et al. Tuning spin-orbit coupling and superconductivity at the LaAlO3/SrTiO3 interface: a magnetotransport study. Phys. Rev. Lett. 104, 126802 (2010).

    CAS  Article  Google Scholar 

  4. Dikin, D. A. et al. Coexistence of superconductivity and ferromagnetism in two dimensions. Phys. Rev. Lett. 107, 056802 (2011).

    CAS  Article  Google Scholar 

  5. Bert, J. A. et al. Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface. Nature Phys. 7, 767–771 (2011).

    CAS  Article  Google Scholar 

  6. Li, L. et al. Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces. Nature Phys. 7, 762–766 (2011).

    CAS  Article  Google Scholar 

  7. Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008).

    CAS  Article  Google Scholar 

  8. Richter, C. et al. Interface superconductor with gap behaviour like a high-temperature superconductor. Nature 502, 528–531 (2013).

    CAS  Article  Google Scholar 

  9. Ryazanov, V. V. et al. Coupling of two superconductors through a ferromagnet: evidence for a π junction. Phys. Rev. Lett. 86, 2427–2430 (2001).

    CAS  Article  Google Scholar 

  10. Weides, M. et al. 0-π Josephson tunnel junctions with ferromagnetic barrier. Phys. Rev. Lett. 97, 247001 (2006).

    CAS  Article  Google Scholar 

  11. Veldhorst, M. et al. Josephson supercurrent through a topological insulator surface state. Nature Mater. 11, 417–421 (2012).

    CAS  Article  Google Scholar 

  12. van Dam, J. A. et al. Supercurrent reversal in quantum dots. Nature 442, 667–670 (2006).

    CAS  Article  Google Scholar 

  13. Nelson, K. D. et al. Odd-parity superconductivity in Sr2RuO4 . Science 306, 1151–1154 (2004).

    CAS  Article  Google Scholar 

  14. van Harlingen, D. J. Phase-sensitive tests of the symmetry of the pairing state in the high-temperature superconductors−evidence for d x 2 - y 2 symmetry. Rev. Mod. Phys. 67, 515–535 (1995).

    CAS  Article  Google Scholar 

  15. Cheng, G. et al. Electron pairing without superconductivity. Nature 521, 196–199 (2015).

    CAS  Article  Google Scholar 

  16. Takayanagi, H. & Kawakami, T. Superconducting proximity effect in the native inversion layer on InAs. Phys. Rev. Lett. 54, 2449–2452 (1985).

    CAS  Article  Google Scholar 

  17. Doh, Y.-J. et al. Tunable supercurrent through semiconductor nanowires. Science 309, 272–275 (2005).

    CAS  Article  Google Scholar 

  18. Heersche, H. B. et al. Bipolar supercurrent in graphene. Nature 446, 56–59 (2007).

    CAS  Article  Google Scholar 

  19. Brandt, E. H. & Clem, J. R. Superconducting thin rings with finite penetration depth. Phys. Rev. B 69, 184509 (2004).

    Article  Google Scholar 

  20. Khapaev, M. M. et al. Current distribution simulation for superconducting multi-layered structures. Supercond. Sci. Technol. 16, 24 (2003).

    CAS  Article  Google Scholar 

  21. Reyren, N. et al. Anisotropy of the superconducting transport properties of the LaAlO3/SrTiO3 interface. Appl. Phys. Lett. 94, 112506 (2009).

    Article  Google Scholar 

  22. Bert, J. A. et al. Gate-tuned superfluid density at the superconducting LaAlO3/SrTiO3 interface. Phys. Rev. B 86, 060503 (2012).

    Article  Google Scholar 

  23. McCollam, A. et al. Quantum oscillations and subband properties of the two-dimensional electron gas at the LaAlO3/SrTiO3 interface. APL Mater. 2, 022102 (2014).

    Article  Google Scholar 

  24. Tinkham, M. Introduction to Superconductivity 2nd edn (Dover, 1996).

  25. Gallagher, P. et al. Gate-tunable superconducting weak link and quantum point contact spectroscopy on a strontium titanate surface. Nature Phys. 10, 748–752 (2014).

    CAS  Article  Google Scholar 

  26. Goswami, S. et al. Nanoscale electrostatic control of oxide interfaces. Nano Lett. 15, 2627–2632 (2015).

    CAS  Article  Google Scholar 

  27. Bal, V. V. et al. Gate-tunable superconducting weak link behavior in top-gated LaAlO3-SrTiO3 . Appl. Phys. Lett. 106, 212601 (2015).

    Article  Google Scholar 

  28. Clarke, J. & Braginski, A. I. (eds) The SQUID Handbook Vol. 1 (Wiley, 2004).

  29. Honig, M. et al. Local electrostatic imaging of striped domain order in LaAlO3/SrTiO3 . Nature Mater. 12, 1112–1118 (2013).

    CAS  Article  Google Scholar 

  30. Kalisky, B. et al. Locally enhanced conductivity due to the tetragonal domain structure in LaAlO3/SrTiO3 heterointerfaces. Nature Mater. 12, 1091–1095 (2013).

    CAS  Article  Google Scholar 

Download references


We thank T. Klapwijk, A. Geresdi, A. Akhmerov, A. Brinkman and J. Mannhart for useful discussions and feedback about the preliminary results. This work was supported by The Netherlands Organisation for Scientific Research (NWO/OCW) as part of the Frontiers of Nanoscience program, the Dutch Foundation for Fundamental Research on Matter (FOM), the Deutsche Forschungsgemeinschaft (DFG) via Project KO 1303/13-1 and EU-FP6-COST Action MP1308.

Author information

Authors and Affiliations



E.M. fabricated the devices. S.G. performed the transport measurements with help from E.M. S.G. and A.M.R.V.L.M. analysed the data. R.W., R.K. and D.K. carried out the numerical simulations and Y.M.B. provided theoretical support. L.M.K.V. and A.D.C. supervised the project. S.G. wrote the manuscript with input from all co-authors.

Corresponding authors

Correspondence to Srijit Goswami or Andrea D. Caviglia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 916 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goswami, S., Mulazimoglu, E., Monteiro, A. et al. Quantum interference in an interfacial superconductor. Nature Nanotech 11, 861–865 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research