Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry

Abstract

Brownian motion is one of the most fascinating phenomena in nature1,2. Its conceptual implications have a profound impact in almost every field of science and even economics, from dissipative processes in thermodynamic systems3,4, gene therapy in biomedical research5, artificial motors6 and galaxy formation7 to the behaviour of stock prices8. However, despite extensive experimental investigations, the basic microscopic knowledge of prototypical systems such as colloidal particles in a fluid is still far from being complete. This is particularly the case for the measurement of the particles' instantaneous velocities, elusive due to the rapid random movements on extremely short timescales9. Here, we report the measurement of the instantaneous ballistic velocity of Brownian nanocrystals suspended in both aqueous and organic solvents. To achieve this, we develop a technique based on upconversion nanothermometry. We find that the population of excited electronic states in NaYF4:Yb/Er nanocrystals at thermal equilibrium can be used for temperature mapping of the nanofluid with great thermal sensitivity (1.15% K−1 at 296 K) and a high spatial resolution (<1 μm). A distinct correlation between the heat flux in the nanofluid and the temporal evolution of Er3+ emission allows us to measure the instantaneous velocity of nanocrystals with different sizes and shapes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic characteristic timescales of Brownian motion in different regimes.
Figure 2: Schematic of the experimental set-up and upconversion luminescence measurements of the NaYF4:Yb/Er@NaYF4 nanofluid.
Figure 3: Time-dependent temperature profile of the NaYF4:Yb/Er@NaYF4 nanofluid.
Figure 4: Time-dependent temperature and heat-transfer-coefficient profiles of the fluid containing NaYF4:Yb/Er/Gd nanorods.

Similar content being viewed by others

References

  1. Einstein, A. Theoretical remarks on the Brownian motion. Z. Elektrotech. Angew. P. 13, 41–42 (1907).

    Article  CAS  Google Scholar 

  2. Frey, E. & Kroy, K. Brownian motion: a paradigm of soft matter and biological physics. Ann. Phys. 14, 20–50 (2005).

    Article  CAS  Google Scholar 

  3. Millen, J., Deesuwan, T., Barker, P. & Anders, J. Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. Nature Nanotech. 9, 425–429 (2014).

    Article  CAS  Google Scholar 

  4. Franosch, T. et al. Resonances arising from hydrodynamic memory in Brownian motion. Nature 478, 85–88 (2011).

    Article  CAS  Google Scholar 

  5. Chuck, A. S., Clarke, M. F. & Palsson, B. O. Retroviral infection is limited by Brownian motion. Hum. Gene Ther. 7, 1527–1534 (1996).

    Article  CAS  Google Scholar 

  6. Hutchison, J. A. et al. A surface-bound molecule that undergoes optically biased Brownian rotation. Nature Nanotech. 9, 131–136 (2014).

    Article  CAS  Google Scholar 

  7. Ossenkopf, V. Dust coagulation in dense molecular clouds: the formation of fluffy aggregates. Astron. Astrophys. 280, 617–646 (1993).

    Google Scholar 

  8. Kou, S. G. A Jump-diffusion model for option pricing. Manage. Sci. 48, 1086–1101 (2002).

    Article  Google Scholar 

  9. Li, T. C. & Raizen, M. G. Brownian motion at short time scales. Ann. Phys. 525, 281–295 (2013).

    Article  CAS  Google Scholar 

  10. Kheifets, S., Simha, A., Melin, K., Li, T. C. & Raizen, M. G. Observation of Brownian motion in liquids at short times: instantaneous velocity and memory loss. Science 343, 1493–1496 (2014).

    Article  CAS  Google Scholar 

  11. Huang, R. X. et al. Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid. Nature Phys. 7, 576–580 (2011).

    Article  CAS  Google Scholar 

  12. Li, T. C., Kheifets, S. & Raizen, M. G. Millikelvin cooling of an optically trapped microsphere in vacuum. Nature Phys. 7, 527–530 (2011).

    Article  CAS  Google Scholar 

  13. Mor, F. M., Sienkiewicz, A., Forró, L. & Jeney, S. Upconversion particle as a local luminescent Brownian probe: a photonic force microscopy study. ACS Photon. 1, 1251–1257 (2015).

    Article  Google Scholar 

  14. Brites, C. D. S. et al. Thermometry at the nanoscale. Nanoscale 4, 4799–4829 (2012).

    Article  CAS  Google Scholar 

  15. Jaque, D. & Vetrone, F. Luminescence nanothermometry. Nanoscale 4, 4301–4326 (2012).

    Article  CAS  Google Scholar 

  16. Okabe, K. et al. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nature Commun. 3, 705 (2012).

    Article  Google Scholar 

  17. Kucsko, G. et al. Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013).

    Article  CAS  Google Scholar 

  18. Kroy, K. Levitating nanoparticles: non-equilibrium nano-thermometry. Nature Nanotech. 9, 415–417 (2014).

    Article  CAS  Google Scholar 

  19. Wade, S. A., Collins, S. F. & Baxter, G. W. Fluorescence intensity ratio technique for optical fiber point temperature sensing. J. Appl. Phys. 94, 4743–4756 (2003).

    Article  CAS  Google Scholar 

  20. Bünzli, J. C. G. et al. Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 34, 1048–1077 (2005).

    Article  Google Scholar 

  21. Vetrone, F. et al. Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+,Yb3+ nanocrystals. J. Appl. Phys. 96, 661–667 (2004).

    Article  CAS  Google Scholar 

  22. Wang, F. et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061–1065 (2010).

    Article  CAS  Google Scholar 

  23. Gargas, D. J. et al. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nature Nanotech. 9, 300–305 (2014).

    Article  CAS  Google Scholar 

  24. Deng, R. et al. Temporal full-colour tuning through non-steady-state upconversion. Nature Nanotech. 10, 237–242 (2015).

    Article  CAS  Google Scholar 

  25. Debasu, M. L. et al. All-in-one optical heater-thermometer nanoplatform operative from 300 to 2000 K based on Er3+ emission and blackbody radiation. Adv. Mater. 25, 4868–4874 (2013).

    Article  CAS  Google Scholar 

  26. Kumar, D. H. et al. Model for heat conduction in nanofluids. Phys. Rev. Lett. 93, 144301–144304 (2004).

    Article  Google Scholar 

  27. Kihm, K. D., Chon, C. H., Lee, J. S. & Choi, S. U. S. A new heat propagation velocity prevails over Brownian particle velocities in determining the thermal conductivities of nanofluids. Nano. Res. Lett. 6, 361–369 (2011).

    Article  Google Scholar 

  28. Prasher, R., Bhattacharya, P. & Phelan, P. E. Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys. Rev. Lett. 94, 025901–025904 (2005).

    Article  Google Scholar 

  29. Brenner, H. Self-thermophoresis and thermal self-diffusion in liquids and gases. Phys. Rev. E 82, 036325–036341 (2010).

    Article  Google Scholar 

  30. Li, C. H. & Peterson, G. P. The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids. J. Appl. Phys. 101, 044312 (2007).

    Article  Google Scholar 

  31. Lakowicz, J. R. Principles of Fluorescence Spectroscopy 2nd edn (Springer, 2013).

    Google Scholar 

  32. Incropera, F. P., DeWitt, D. P., Bergman, T. L. & Lavine, A. S. Introduction to Heat Transfer 5th edn (Wiley, 2006).

    Google Scholar 

  33. Rea, U., McKrell, T., Hu, L. W. & Buongiorno, J. Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids. Int. J. Heat Mass Tran. 52, 2042–2048 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge V.S. Amaral for helpful discussion and Q. Sun for assistance with the nanorod synthesis. This work is supported by the CICECO-Aveiro Institute of Materials (FCT UID/CTM/50011/2013), financed by Portuguese funds through the FCT/MEC and when applicable co-financed by FEDER under the PT2020 Partnership Agreement. X.L. thanks the Agency for Science, Technology and Research (A*STAR) for support under contracts 122-PSE-0014 and 1231AFG028 (Singapore). W.H. is grateful for support from the National Basic Research Program of China (973, Grant 2015CB932200) and National Natural Science Foundation of China (61136003). C.D.S.B. and M.L.D. thank the FCT for postdoctoral research training (under grants SFRH/BPD/89003/2012 and SFRH/BPD/93884/2013).

Author information

Authors and Affiliations

Authors

Contributions

C.D.S.B. and L.D.C. conceived the projects. C.D.S.B., L.D.C., J.R. and X.L. co-wrote the manuscript with input from other authors. C.D.S.B., X.X. and M.L.D. performed the experiments. X.Q., X.L., R.C., W.H. and L.D.C. provided input into the design of the experiments.

Corresponding authors

Correspondence to Xiaogang Liu or Luís D. Carlos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2719 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brites, C., Xie, X., Debasu, M. et al. Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry. Nature Nanotech 11, 851–856 (2016). https://doi.org/10.1038/nnano.2016.111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing