Perovskite energy funnels for efficient light-emitting diodes

Abstract

Organometal halide perovskites exhibit large bulk crystal domain sizes, rare traps, excellent mobilities and carriers that are free at room temperature—properties that support their excellent performance in charge-separating devices. In devices that rely on the forward injection of electrons and holes, such as light-emitting diodes (LEDs), excellent mobilities contribute to the efficient capture of non-equilibrium charge carriers by rare non-radiative centres. Moreover, the lack of bound excitons weakens the competition of desired radiative (over undesired non-radiative) recombination. Here we report a perovskite mixed material comprising a series of differently quantum-size-tuned grains that funnels photoexcitations to the lowest-bandgap light-emitter in the mixture. The materials function as charge carrier concentrators, ensuring that radiative recombination successfully outcompetes trapping and hence non-radiative recombination. We use the new material to build devices that exhibit an external quantum efficiency (EQE) of 8.8% and a radiance of 80 W sr−1 m−2. These represent the brightest and most efficient solution-processed near-infrared LEDs to date.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Unit cell structure, electronic bandstructure and photoluminescent properties of quasi-2D perovskites.
Figure 2: Carrier funnelling in quasi-2D perovskite solids.
Figure 3: TA and time-resolved PL spectra for quasi-2D perovskite, 〈n〉 = 3 and 〈n〉 = 5.
Figure 4: EL and LED device performance of quasi-2D perovskites.

References

  1. 1

    Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).

    CAS  Article  Google Scholar 

  2. 2

    Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    CAS  Article  Google Scholar 

  3. 3

    Xing, G. et al. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3 . Science 342, 344–347 (2013).

    CAS  Article  Google Scholar 

  4. 4

    Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–320 (2013).

    CAS  Article  Google Scholar 

  5. 5

    Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).

    CAS  Article  Google Scholar 

  6. 6

    Deschler, F. et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductor. J. Phys. Chem. Lett. 5, 1421–1426 (2014).

    CAS  Article  Google Scholar 

  7. 7

    Schmidt, L. C. et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 136, 850–853 (2014).

    CAS  Article  Google Scholar 

  8. 8

    D'Innocenzo,V., Kandada, A., Bastiani, M., Gandini, M. & Petrozza, A. Tuning the light emission properties by band gap engineering in hybrid lead halide perovskite. J. Am. Chem. Soc. 136, 17730–17733 (2014).

    CAS  Article  Google Scholar 

  9. 9

    Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    CAS  Article  Google Scholar 

  10. 10

    Yakunin, S. et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystal of caesium lead halide perovskites. Nature Commun. 6, 8056 (2015).

    CAS  Article  Google Scholar 

  11. 11

    Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskite for lasing. Nature Mater. 13, 476–480 (2014).

    CAS  Article  Google Scholar 

  12. 12

    Zhang, Q., Ha, S. T., Liu, X., Sum, T. C. & Xiong, Q. Room-temperature near-infrared high-q perovskite whispering-gallery planar nanolasers. Nano Lett. 14, 5995–6001 (2014).

    CAS  Article  Google Scholar 

  13. 13

    Song, J. et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 27, 7162–7167 (2015).

    CAS  Article  Google Scholar 

  14. 14

    Bade, S. et al. Fully printed halide perovskite light-emitting diodes with silver nanowire electrodes. ACS Nano 10, 1795–1801 (2016).

    CAS  Article  Google Scholar 

  15. 15

    Wong, A. B. et al. Growth and anion exchange conversion of CH3NH3PbX3 nanorod arrays for light-emitting diodes. Nano Lett. 15, 5519–5524 (2015).

    CAS  Article  Google Scholar 

  16. 16

    Kim, Y. et al. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv. Mater. 27, 1248–1254 (2015).

    CAS  Article  Google Scholar 

  17. 17

    Sadhanala, A. et al. Blue-green color tunable solution processable organolead chloride–bromide mixed halide perovskites for optoelectronic applications. Nano Lett. 15, 6095–6101 (2015).

    CAS  Article  Google Scholar 

  18. 18

    Savenije, T. J. et al. Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite. J. Phys. Chem. Lett. 5, 2189–2194 (2014).

    CAS  Article  Google Scholar 

  19. 19

    Yang, Y. et al. Observation of a hot-phonon bottleneck in lead-iodide perovskites. Nature Photon. 10, 53–59 (2016).

    CAS  Article  Google Scholar 

  20. 20

    Saba, M. et al. Correlated electron-hole plasma in organometal perovskites. Nature Commun. 5, 5049 (2014).

    CAS  Article  Google Scholar 

  21. 21

    Yang, Y. et al. Comparison of recombination dynamics in CH3NH3PbBr3 and CH3NH3PbI3 perovskite films: influence of exciton binding energy. J. Phys. Chem. Lett. 6, 4688–4692 (2015).

    CAS  Article  Google Scholar 

  22. 22

    Stranks, S. D. et al. Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states. Phys. Rev. Appl. 2, 034007 (2014).

    Article  Google Scholar 

  23. 23

    Wu, X. et al. Trap states in lead iodide perovskites. J. Am. Chem. Soc. 137, 2089–2096 (2015).

    CAS  Article  Google Scholar 

  24. 24

    Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotech. 9, 687–692 (2014).

    CAS  Article  Google Scholar 

  25. 25

    Li, G. et al. Efficient light-emitting diodes based on nanocrystalline perovksite in a dielectric polymer matrix. Nano Lett. 15, 2640–2644 (2015).

    CAS  Article  Google Scholar 

  26. 26

    Wang, J. et al. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Adv. Mater. 27, 2311–2316 (2015).

    CAS  Article  Google Scholar 

  27. 27

    Yamada, Y., Nakamura, T., Endo, M., Wakamiya, A. & Kanemitsu, Y. Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. J. Am. Chem. Soc. 136, 11610–11613 (2014).

    CAS  Article  Google Scholar 

  28. 28

    Ishihara, T., Takahashi, J. & Goto, T. Optical properties due to electronic transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4 . Phys. Rev. B 42, 11099–11107 (1990).

    CAS  Article  Google Scholar 

  29. 29

    Mitzi, D. B. in Progress in Inorganic Chemistry Vol. 48 (ed Karlin, K. D.) 1–121 (Wiley, 1999).

  30. 30

    Hong, X., Ishihara, T. & Nurmikko, A. V. Dielectric confinement effect on excitons in PbI4-based layered semiconductors. Phys. Rev. B 45, 6961–6964 (1992).

    CAS  Article  Google Scholar 

  31. 31

    Dou, L. et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 349, 1518–1521 (2015).

    CAS  Article  Google Scholar 

  32. 32

    Chondroudis, K. & Mitzi, D. B. Electroluminescence from an organic-inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers. Chem. Mater. 11, 3028–3030 (1999).

    CAS  Article  Google Scholar 

  33. 33

    Kieslich, G., Sun, S. & Cheetham, A. K. An extended tolerance factor approach for organic–inorganic perovskites. Chem. Sci. 6, 3430–3433 (2015).

    CAS  Article  Google Scholar 

  34. 34

    Smith, I. C., Hoke, E. T., Solis-Ibarra, D., McGhee, M. D. & Karunadasa, H. I. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 126, 11414–11417 (2014).

    Article  Google Scholar 

  35. 35

    Cao, D. H., Stoumpos, C. C., Farha, O. K., Hupp, J. T. & Kanatzidis, M. G. 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 137, 7843–7850 (2015).

    CAS  Article  Google Scholar 

  36. 36

    Quan, L. et al. Ligand-stabilized reduced-dimensionality perovskites. J. Am. Chem. Soc. 138, 2649–2655 (2016).

    CAS  Article  Google Scholar 

  37. 37

    Miller, E. M. et al. Substrate-controlled band positions in CH3NH3PbI3 perovskite films. Phys. Chem. Chem. Phys. 16, 22122–22130 (2014).

    CAS  Article  Google Scholar 

  38. 38

    Jasieniak, J., Califano, M. & Watkins, S. E. Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals. ACS Nano. 5, 5888–5902 (2011).

    CAS  Article  Google Scholar 

  39. 39

    Tyagi, P., Arveson, S. M. & Tisdale, W. A. Colloidal organohalide perovskite nanoplatelets exhibiting quantum confinement. J. Phys. Chem. Lett. 6, 1911–1916 (2015).

    CAS  Article  Google Scholar 

  40. 40

    Sichert, J. A. et al. Quantum size effect in organometal halide perovskite nanoplatelets. Nano. Lett. 15, 6521–6527 (2015).

    CAS  Article  Google Scholar 

  41. 41

    Xu, F. et al. Efficient exciton funneling in cascaded PbS quantum dot supperstructures. ACS Nano. 12, 9950–9957 (2011).

    Article  Google Scholar 

  42. 42

    Berggren, M., Dodabalapur, A., Slusher, R. E. & Bao, Z. Light amplification in organic thin films using cascade energy transfer. Nature 389, 466–469 (1997).

    CAS  Article  Google Scholar 

  43. 43

    Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Mater. 13, 897–903 (2014).

    CAS  Article  Google Scholar 

  44. 44

    Gao, Y. et al. Enhanced hot-carrier cooling and ultrafast spectral diffusion in strongly coupled PbSe quantum-dot solids. Nano Lett. 15, 6521–6527 (2015).

    Article  Google Scholar 

  45. 45

    de Mello, J., Wittmann, H. F. & Friend, R. H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 9, 230–232 (1997).

    CAS  Article  Google Scholar 

  46. 46

    Supran, G. J. et al. High-performance shortwave-infrared light-emitting devices using core–shell (PbS–CdS) colloidal quantum dots. Adv. Mater. 27, 1437–1442 (2015).

    CAS  Article  Google Scholar 

  47. 47

    Sun, L. et al. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control. Nature Nanotech. 7, 369–373 (2012).

    CAS  Article  Google Scholar 

  48. 48

    Chen, Z. et al. Photoluminescence study of polycrystalline CsSnI3 thin films: determination of exciton binding energy. J. Lumin. 132, 345–349 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This publication is based in part on work supported by Award KUS-11-009-21, made by King Abdullah University of Science and Technology (KAUST), by the Ontario Research Fund Research Excellence Program, and by the Natural Sciences and Engineering Research Council (NSERC) of Canada. L. N. Quan and D. H. Kim acknowledge the financial support by National Research Foundation of Korea Grant funded by the Korean Government (2014R1A2A1A09005656). The authors thank R. Wolowiec and D. Kopilovic for their help during the course of the study.

Author information

Affiliations

Authors

Contributions

M.Y., L.N.Q., R.C. and E.H.S. conceived the idea and proposed the experimental design. M.Y., L.N.Q., R.C., S.H., D.H.K. and E.H.S. performed and analysed XRD, UV absorption, PL lifetime, transient absorption and XPS measurements. M.Y., L.N.Q., P.K. and E.M.B performed the device fabrication. R.C., G.W and R.S. performed the TA and PL decay measurements. M.Y., L.N.Q., Y.Z. and Z.L. tested the devices. M.Y., L.N.Q., R.C., O.V. and E.H.S. co-wrote the manuscript. All authors read and commented on the manuscript.

Corresponding authors

Correspondence to Dong Ha Kim or Edward H. Sargent.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3524 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yuan, M., Quan, L., Comin, R. et al. Perovskite energy funnels for efficient light-emitting diodes. Nature Nanotech 11, 872–877 (2016). https://doi.org/10.1038/nnano.2016.110

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research