Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Single-molecule diodes with high rectification ratios through environmental control

Abstract

Molecular electronics aims to miniaturize electronic devices by using subnanometre-scale active components1,2,3. A single-molecule diode, a circuit element that directs current flow4, was first proposed more than 40 years ago5 and consisted of an asymmetric molecule comprising a donor–bridge–acceptor architecture to mimic a semiconductor p–n junction. Several single-molecule diodes have since been realized in junctions featuring asymmetric molecular backbones6,7,8, molecule–electrode linkers9 or electrode materials10. Despite these advances, molecular diodes have had limited potential for applications due to their low conductance, low rectification ratios, extreme sensitivity to the junction structure and high operating voltages7,8,9,11,12. Here, we demonstrate a powerful approach to induce current rectification in symmetric single-molecule junctions using two electrodes of the same metal, but breaking symmetry by exposing considerably different electrode areas to an ionic solution. This allows us to control the junction's electrostatic environment in an asymmetric fashion by simply changing the bias polarity. With this method, we reliably and reproducibly achieve rectification ratios in excess of 200 at voltages as low as 370 mV using a symmetric oligomer of thiophene-1,1-dioxide13,14. By taking advantage of the changes in the junction environment induced by the presence of an ionic solution, this method provides a general route for tuning nonlinear nanoscale device phenomena, which could potentially be applied in systems beyond single-molecule junctions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Environmentally enabled single-molecule diodes.
Figure 2: Energy level diagram illustrating the rectification mechanism for a LUMO conducting molecular junction.
Figure 3: High rectification ratios in TDOn junctions.
Figure 4: Rectification with other molecule/solvent systems.
Figure 5: Experimental and computational determination of energy level alignment.

Similar content being viewed by others

References

  1. Nitzan, A. & Ratner, M. A. Electron transport in molecular wire junctions. Science 300, 1384–1389 (2003).

    Article  CAS  Google Scholar 

  2. Tao, N. J. Electron transport in molecular junctions. Nature Nanotech. 1, 173–181 (2006).

    Article  CAS  Google Scholar 

  3. Aradhya, S. V. & Venkataraman, L. Single-molecule junctions beyond electronic transport. Nature Nanotech. 8, 399–410 (2013).

    Article  CAS  Google Scholar 

  4. Ellenbogen, J. C. & Love, J. C. Architectures for molecular electronic computers. I. Logic structures and an adder designed from molecular electronic diodes. Proc. IEEE 88, 386–426 (2000).

    Article  CAS  Google Scholar 

  5. Aviram, A. & Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974).

    Article  CAS  Google Scholar 

  6. Mayor, M. et al. Electric current through a molecular rod—relevance of the position of the anchor groups. Angew. Chem. Int. Ed. 42, 5834–5838 (2003).

    Article  CAS  Google Scholar 

  7. Diez-Perez, I. et al. Rectification and stability of a single molecular diode with controlled orientation. Nature Chem. 1, 635–641 (2009).

    Article  CAS  Google Scholar 

  8. Lortscher, E. et al. Transport properties of a single-molecule diode. ACS Nano 6, 4931–4939 (2012).

    Article  CAS  Google Scholar 

  9. Batra, A. et al. Tuning rectification in single-molecular diodes. Nano Lett. 13, 6233–6237 (2013).

    Article  CAS  Google Scholar 

  10. Kim, T., Liu, Z. F., Lee, C., Neaton, J. B. & Venkataraman, L. Charge transport and rectification in molecular junctions formed with carbon-based electrodes. Proc. Natl Acad. Sci. USA 111, 10928–10932 (2014).

    Article  CAS  Google Scholar 

  11. Elbing, M. et al. A single-molecule diode. Proc. Natl Acad. Sci. USA 102, 8815–8820 (2005).

    Article  CAS  Google Scholar 

  12. Stokbro, K., Taylor, J. & Brandbyge, M. Do Aviram–Ratner diodes rectify? J. Am. Chem. Soc. 125, 3674–3675 (2003).

    Article  CAS  Google Scholar 

  13. Dell, E. J., Capozzi, B., Xia, J., Venkataraman, L. & Campos, L. M. Molecular length dictates the nature of charge carriers in single-molecule junctions of oxidized oligothiophenes. Nature Chem. 7, 209–214 (2015).

    Article  CAS  Google Scholar 

  14. Barbarella, G., Pudova, O., Arbizzani, C., Mastragostino, M. & Bongini, A. Oligothiophene-S,S-dioxides: a new class of thiophene-based materials. J. Org. Chem. 63, 1742–1745 (1998).

    Article  CAS  Google Scholar 

  15. Xu, B. Q. & Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).

    Article  CAS  Google Scholar 

  16. Nagahara, L. A., Thundat, T. & Lindsay, S. M. Preparation and characterization of STM tips for electrochemical studies. Rev. Sci. Instrum. 60, 3128–3130 (1989).

    Article  CAS  Google Scholar 

  17. Metzger, R. M. Unimolecular electrical rectifiers. Chem. Rev. 103, 3803–3834 (2003).

    Article  CAS  Google Scholar 

  18. Nerngchamnong, N. et al. The role of van der Waals forces in the performance of molecular diodes. Nature Nanotech. 8, 113–118 (2013).

    Article  CAS  Google Scholar 

  19. Ciszkowska, M. & Stojek, Z. Voltammetry in solutions of low ionic strength. Electrochemical and analytical aspects. J. Electroanal. Chem. 466, 129–143 (1999).

    Article  CAS  Google Scholar 

  20. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Theory and Applications (Wiley, 2001).

    Google Scholar 

  21. Paulsson, M. & Datta, S. Thermoelectric effect in molecular electronics. Phys. Rev. B 67, 241403 (2003).

    Article  Google Scholar 

  22. Quek, S. Y. et al. Mechanically controlled binary conductance switching of a single-molecule junction. Nature Nanotech. 4, 230–234 (2009).

    Article  CAS  Google Scholar 

  23. Quek, S. Y. et al. Amine–gold linked single-molecule circuits: experiment and theory. Nano Lett. 7, 3477–3482 (2007).

    Article  CAS  Google Scholar 

  24. Darancet, P., Widawsky, J. R., Choi, H. J., Venkataraman, L. & Neaton, J. B. Quantitative current–voltage characteristics in molecular junctions from first principles. Nano Lett. 12, 6250–6254 (2012).

    Article  CAS  Google Scholar 

  25. Adak, O., Korytar, R., Joe, A. Y., Evers, F. & Venkataraman, L. Impact of electrode density of states on transport through pyridine-linked single molecule junctions. Preprint at http://arXiv.org/abs/1504.00242 (2015).

  26. Brandbyge, M., Mozos, J. L., Ordejon, P., Taylor, J. & Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002).

    Article  Google Scholar 

  27. Fatemi, V., Kamenetska, M., Neaton, J. B. & Venkataraman, L. Environmental control of single-molecule junction transport. Nano Lett. 11, 1988–1992 (2011).

    Article  CAS  Google Scholar 

  28. Guo, X. F. et al. Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 311, 356–359 (2006).

    Article  CAS  Google Scholar 

  29. Prins, F. et al. Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes. Nano Lett. 11, 4607–4611 (2011).

    Article  CAS  Google Scholar 

  30. Venkataraman, L., Klare, J. E., Nuckolls, C., Hybertsen, M. S. & Steigerwald, M. L. Dependence of single-molecule junction conductance on molecular conformation. Nature 442, 904–907 (2006).

    Article  CAS  Google Scholar 

  31. Widawsky, J. R. et al. Measurement of voltage-dependent electronic transport across amine-linked single-molecular-wire junctions. Nanotechnology 20, 434009 (2009).

    Article  CAS  Google Scholar 

  32. Huber, R. et al. Electrical conductance of conjugated oligormers at the single molecule level. J. Am. Chem. Soc. 130, 1080–1084 (2008).

    Article  CAS  Google Scholar 

  33. Neaton, J. B., Hybertsen, M. S. & Louie, S. G. Renormalization of molecular electronic levels at metal–molecule interfaces. Phys. Rev. Lett. 97, 216405 (2006).

    Article  CAS  Google Scholar 

  34. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Hybertsen and M. Steigerwald for discussions. The experimental work was supported primarily by the National Science Foundation (award no. DMR-1206202). E.J.D. acknowledges the HHMI, the American Australian Association and Dow Chemical Company for International Research Fellowships. The computational work was supported by the Molecular Foundry, and by the Materials Sciences and Engineering Division (Theory FWP), US Department of Energy, Office of Basic Energy Sciences (contract no. DE-AC02-05CH11231). Portions of the computation work were performed at National Energy Research Scientific Computing Center. O.A. acknowledges support from the NSF (award no. DMR-1122594). L.V. thanks the Packard Foundation for support.

Author information

Authors and Affiliations

Authors

Contributions

Experiments were conceived and designed by B.C., O.A., L.M.C., J.B.N. and L.V. and performed by B.C., O.A. and J.C.T. Data analysis was carried out by B.C. and O.A. Compounds were synthesized by J.L. and E.J.D. Calculations were performed by Z-F.L. and J.B.N. The manuscript was co-written by B.C., J.B.N., L.M.C. and L.V., with input from all authors.

Corresponding authors

Correspondence to Jeffrey B. Neaton, Luis M. Campos or Latha Venkataraman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 4967 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capozzi, B., Xia, J., Adak, O. et al. Single-molecule diodes with high rectification ratios through environmental control. Nature Nanotech 10, 522–527 (2015). https://doi.org/10.1038/nnano.2015.97

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.97

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing