Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metal-halide perovskites for photovoltaic and light-emitting devices

Subjects

Abstract

Metal-halide perovskites are crystalline materials originally developed out of scientific curiosity. Unexpectedly, solar cells incorporating these perovskites are rapidly emerging as serious contenders to rival the leading photovoltaic technologies. Power conversion efficiencies have jumped from 3% to over 20% in just four years of academic research. Here, we review the rapid progress in perovskite solar cells, as well as their promising use in light-emitting devices. In particular, we describe the broad tunability and fabrication methods of these materials, the current understanding of the operation of state-of-the-art solar cells and we highlight the properties that have delivered light-emitting diodes and lasers. We discuss key thermal and operational stability challenges facing perovskites, and give an outlook of future research avenues that might bring perovskite technology to commercialization.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Perovskite processing and film formation.
Figure 2: Tuning of the bandgap.
Figure 3: Operational principles of perovskite solar cells.
Figure 4: Material and device stability.
Figure 5: Relationship between perovskite solar cells and different photovoltaic technologies.
Figure 6: Perovskite light-emitting devices.

References

  1. 1

    Chapin, D. M., Fuller, C. S. & Pearson, G. L. Solar energy converting apparatus. US patent US2780765 A (1957).

  2. 2

    Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (version 45). Prog. Photovoltaics 23, 1–9 (2015).

    Google Scholar 

  3. 3

    Snaith, H. J. Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells. J. Phys Chem. Lett. 4, 3623–3630 (2013).

    CAS  Google Scholar 

  4. 4

    Park, N. G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 4, 2423–2429 (2013).

    CAS  Google Scholar 

  5. 5

    Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nature Photon. 8, 506–514 (2014).

    CAS  Google Scholar 

  6. 6

    Gratzel, M. The light and shade of perovskite solar cells. Nature Mater. 13, 838–842 (2014).

    CAS  Google Scholar 

  7. 7

    Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). This was the first published report of a solar cell incorporating perovskites.

    CAS  Google Scholar 

  8. 8

    Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    CAS  Article  Google Scholar 

  9. 9

    Kim, H. S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012). References 8 and 9 reported the first high-performance perovskite solar cells with increased stability by replacing the problematic liquid hole-transporter with a solid-state hole transporter.

    Google Scholar 

  10. 10

    Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015). This paper presents perovskite devices with the highest published certified efficiency (17.9%) at the time of writing.

    CAS  Google Scholar 

  11. 11

    National Renewable Energy Labs (NREL) efficiency chart (2015); http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (accessed 22 April 2015).

  12. 12

    Kazim, S., Nazeeruddin, M. K., Gratzel, M. & Ahmad, S. Perovskite as light harvester: a game changer in photovoltaics. Angew. Chem. Int. Ed. 53, 2812–2824 (2014).

    CAS  Google Scholar 

  13. 13

    Im, J. H., Lee, C. R., Lee, J. W., Park, S. W. & Park, N. G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4093 (2011).

    CAS  Google Scholar 

  14. 14

    Eperon, G. E., Burlakov, V. M., Docampo, P., Goriely, A. & Snaith, H. J. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 24, 151–157 (2014).

    CAS  Google Scholar 

  15. 15

    Ball, J. M., Lee, M. M., Hey, A. & Snaith, H. J. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 6, 1739–1743 (2013). This was the first report of a high-performance perovskite device in a planar architecture.

    CAS  Google Scholar 

  16. 16

    Heo, J. H. et al. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photon. 7, 486–491 (2013).

    CAS  Google Scholar 

  17. 17

    Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. I. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013).

    CAS  Google Scholar 

  18. 18

    Leijtens, T., Lauber, B., Eperon, G. E., Stranks, S. D. & Snaith, H. J. The importance of perovskite pore filling in organometal mixed halide sensitized TiO2-based solar cells. J. Phys. Chem. Lett. 5, 1096–1102 (2014).

    CAS  Google Scholar 

  19. 19

    Conings, B. et al. Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach. Adv. Mater. 26, 2041–2046 (2014).

    CAS  Google Scholar 

  20. 20

    Nie, W. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–525 (2015).

    CAS  Google Scholar 

  21. 21

    Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Mater. 13, 897–903 (2014).

    CAS  Google Scholar 

  22. 22

    Zhou, H. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014).

    CAS  Google Scholar 

  23. 23

    Xiao, M. et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. Int. Ed. 53, 9898–9903 (2014).

    CAS  Google Scholar 

  24. 24

    You, J. et al. Moisture assisted perovskite film growth for high performance solar cells. Appl. Phys. Lett. 105, 183902 (2014).

    Google Scholar 

  25. 25

    Bass, K. K. et al. Influence of moisture on the preparation, crystal structure, and photophysical properties of organohalide perovskites. Chem. Commun. 50, 15819–15822 (2014).

    CAS  Google Scholar 

  26. 26

    Liang, K., Mitzi, D. B. & Prikas, M. T. Synthesis and characterization of organic−inorganic perovskite thin films prepared using a versatile two-step dipping technique. Chem. Mater. 10, 403–411 (1998).

    CAS  Google Scholar 

  27. 27

    Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    CAS  Google Scholar 

  28. 28

    Liu, D. & Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photon. 8, 133–138 (2014).

    CAS  Google Scholar 

  29. 29

    Chen, Q. et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136, 622–625 (2014).

    CAS  Google Scholar 

  30. 30

    Xiao, Z. G. et al. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 7, 2619–2623 (2014).

    CAS  Google Scholar 

  31. 31

    Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).

    CAS  Google Scholar 

  32. 32

    Malinkiewicz, O. et al. Perovskite solar cells employing organic charge-transport layers. Nature Photon. 8, 128–132 (2014).

    CAS  Google Scholar 

  33. 33

    Mitzi, D. B. Progress in Inorganic Chemistry: Synthesis, Structure, and Properties of Organic-Inorganic Perovskites and Related Materials (Wiley, 1999).

    Google Scholar 

  34. 34

    Filip, M. R., Eperon, G. E., Snaith, H. J. & Giustino, F. Steric engineering of metal-halide perovskites with tunable optical band gaps. Nature Commun. 5, 5757 (2014).

    CAS  Google Scholar 

  35. 35

    Castelli, I. E., García-Lastra, J. M., Thygesen, K. S. & Jacobsen, K. W. Bandgap calculations and trends of organometal halide perovskites. APL Mater. 2, 081514 (2014).

    Google Scholar 

  36. 36

    Even, J., Pedesseau, L. & Katan, C. Analysis of multivalley and multibandgap absorption and enhancement of free carriers related to exciton screening in hybrid perovskites. J. Phys. Chem. C 118, 11566–11572 (2014).

    CAS  Google Scholar 

  37. 37

    Dale, L. Trace Elements in Coal (ACARP, 2006); http://www.acarp.com.au/Media/ACARP-WP-3-TraceElementsinCoal.pdf

    Google Scholar 

  38. 38

    Jean, J., Brown, P. R., Jaffe, R. L., Buonassisi, T. & Bulovic, V. Pathways for solar photovoltaics. Energy Environ. Sci. 8, 1200–1219 (2015).

    CAS  Google Scholar 

  39. 39

    Noel, N. K. et al. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061–3068 (2014).

    CAS  Google Scholar 

  40. 40

    Hao, F., Stoumpos, C. C., Cao, D. H., Chang, R. P. H. & Kanatzidis, M. G. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nature Photon. 8, 489–494 (2014).

    CAS  Google Scholar 

  41. 41

    Takahashi, Y. et al. Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity. Dalton Trans. 40, 5563–5568 (2011).

    CAS  Google Scholar 

  42. 42

    Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013). References 42 and 79 reported for the first time the long charge carrier diffusion lengths in perovskites.

    CAS  Google Scholar 

  43. 43

    Wehrenfennig, C., Eperon, G. E., Johnston, M. B., Snaith, H. J. & Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014).

    CAS  Google Scholar 

  44. 44

    Edri, E. et al. Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3–xClx perovskite solar cells. Nature Commun. 5, 3461 (2014).

    Google Scholar 

  45. 45

    Mitzi, D. B., Chondroudis, K. & Kagan, C. R. Organic-inorganic electronics. IBM J. Res. Dev. 45, 29–45 (2001).

    CAS  Google Scholar 

  46. 46

    Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014).

    CAS  Google Scholar 

  47. 47

    Pang, S. et al. NH2CH=NH2PbI3: An alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem. Mater. 26, 1485–1491 (2014).

    CAS  Google Scholar 

  48. 48

    Bailie, C. D. et al. Semi-transparent perovskite solar cells for tandems with silicon and CIGS. Energy Environ. Sci. 8, 956–963 (2015).

    CAS  Google Scholar 

  49. 49

    Mailoa, J. P. et al. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl. Phys. Lett. 106, 121105 (2015).

    Google Scholar 

  50. 50

    Edri, E., Kirmayer, S., Kulbak, M., Hodes, G. & Cahen, D. Chloride inclusion and hole transport material doping to improve methyl ammonium lead bromide perovskite-based high open-circuit voltage solar cells. J. Phys. Chem. Lett. 5, 429–433 (2014).

    CAS  Google Scholar 

  51. 51

    Schulz, P. et al. Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ. Sci. 7, 1377–1381 (2014).

    CAS  Google Scholar 

  52. 52

    Heo, J. H., Song, D. H. & Im, S. H. Planar CH3NH3PbBr3 hybrid solar cells with 10.4% power conversion efficiency, fabricated by controlled crystallization in the spin-coating process. Adv. Mater. 26, 8179–8183 (2014).

    CAS  Google Scholar 

  53. 53

    Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).

    CAS  Google Scholar 

  54. 54

    Zhang, W. et al. Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nature Commun. 6, 6142 (2015).

    CAS  Google Scholar 

  55. 55

    Tidhar, Y. et al. Crystallization of methyl ammonium lead halide perovskites: implications for photovoltaic applications. J. Am. Chem. Soc. 136, 13249–13256 (2014).

    CAS  Google Scholar 

  56. 56

    Williams, S. T. et al. Role of chloride in the morphological evolution of organo-lead halide perovskite thin films. ACS Nano 8, 10640–10654 (2014).

    CAS  Google Scholar 

  57. 57

    Moore, D. T. et al. Crystallization kinetics of organic-inorganic trihalide perovskites and the role of the lead anion in crystal growth. J. Am. Chem. Soc. 137, 2350–2358 (2015).

    CAS  Google Scholar 

  58. 58

    Docampo, P. et al. Solution deposition-conversion for planar heterojunction mixed halide perovskite solar cells. Adv. Energy Mater. 4, 1400355 (2014).

    Google Scholar 

  59. 59

    Dar, M. I. et al. Investigation regarding the role of chloride in organic-inorganic halide perovskites obtained from chloride containing precursors. Nano Lett. 14, 6991–6996 (2014).

    CAS  Google Scholar 

  60. 60

    Unger, E. L. et al. Chloride in lead chloride-derived organo-metal halides for perovskite-absorber solar cells. Chem. Mater. 26, 7158–7165 (2014).

    CAS  Google Scholar 

  61. 61

    Buin, A. et al. Materials processing routes to trap-free halide perovskites. Nano Lett. 14, 6281–6286 (2014).

    CAS  Google Scholar 

  62. 62

    Snaith, H. J. & Schmidt-Mende, L. Advances in liquid-electrolyte and solid-state dye-sensitized solar cells. Adv. Mater. 19, 3187–3200 (2007).

    CAS  Google Scholar 

  63. 63

    Etgar, L. et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134, 17396–17399 (2012).

    CAS  Google Scholar 

  64. 64

    Edri, E. et al. Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). Nano Lett. 14, 1000–1004 (2014).

    CAS  Google Scholar 

  65. 65

    Docampo, P., Ball, J. M., Darwich, M., Eperon, G. E. & Snaith, H. J. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nature Commun. 4, 2761 (2013).

    Google Scholar 

  66. 66

    Eperon, G. E., Burlakov, V. M., Goriely, A. & Snaith, H. J. Neutral color semitransparent microstructured perovskite solar cells. ACS Nano 8, 591–598 (2014).

    CAS  Google Scholar 

  67. 67

    D'Innocenzo, V. et al. Excitons versus free charges in organo-lead tri-halide perovskites. Nature Commun. 5, 3586 (2014).

    Google Scholar 

  68. 68

    Tanaka, K. et al. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3 . Solid State Commun. 127, 619–623 (2003).

    CAS  Google Scholar 

  69. 69

    Saba, M. et al. Correlated electron–hole plasma in organometal perovskites. Nature Commun. 5, 5049 (2014).

    CAS  Google Scholar 

  70. 70

    Stranks, S. D. et al. Recombination kinetics in organic–inorganic perovskites: excitons, free charge, and subgap states. Phys. Rev. Appl. 2, 034007 (2014).

    Google Scholar 

  71. 71

    Deschler, F. et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014). References 71 and 78 report for the first time room-temperature lasing from three-dimensional perovskite materials.

    CAS  Google Scholar 

  72. 72

    Ponseca, C. S. Jr et al. Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. J. Am. Chem. Soc. 136, 5189–5192 (2014).

    CAS  Google Scholar 

  73. 73

    Leijtens, T. et al. Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility. ACS Nano 8, 7147–7155 (2014).

    CAS  Google Scholar 

  74. 74

    Manser, J. S. & Kamat, P. V. Band filling with free charge carriers in organometal halide perovskites. Nature Photon. 8, 737–743 (2014).

    CAS  Google Scholar 

  75. 75

    Tvingstedt, K. et al. Radiative efficiency of lead iodide based perovskite solar cells. Sci. Rep. 4, 6071 (2014).

    CAS  Google Scholar 

  76. 76

    Miller, O. D., Yablonovitch, E. & Kurtz, S. R. Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit. IEEE J. Photovoltaics 2, 303–311 (2012).

    Google Scholar 

  77. 77

    Tress, W. et al. Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: the role of radiative and non-radiative recombination. Adv. Energy Mater. 5, 1400812 (2015).

    Google Scholar 

  78. 78

    Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature Mater. 13, 476–480 (2014). References 71 and 78 report for the first time room-temperature lasing from three-dimensional perovskite materials.

    CAS  Google Scholar 

  79. 79

    Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3 . Science 342, 344–347 (2013). References 42 and 79 reported for the first time the long charge carrier diffusion lengths in perovskites.

    CAS  Google Scholar 

  80. 80

    Shao, Y., Xiao, Z., Bi, C., Yuan, Y. & Huang, J. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nature Commun. 5, 5784 (2014).

    CAS  Google Scholar 

  81. 81

    Dong, Q. et al. Electron–hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    CAS  Google Scholar 

  82. 82

    Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    CAS  Google Scholar 

  83. 83

    De Wolf, S. et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014).

    CAS  Google Scholar 

  84. 84

    Sadhanala, A. et al. Preparation of single-phase films of CH3NH3Pb(I1–xBrx)3 with sharp optical band edges. J. Phys. Chem. Lett. 5, 2501–2505 (2014).

    CAS  Google Scholar 

  85. 85

    Noel, N. K. et al. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead halide perovskites. ACS Nano 8, 9815–6821 (2014).

    CAS  Google Scholar 

  86. 86

    Snaith, H. J. et al. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014). This paper reports the anomalous hysteresis effects observed in perovskite devices.

    CAS  Google Scholar 

  87. 87

    Unger, E. L. et al. Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci. 7, 3690–3698 (2014).

    CAS  Google Scholar 

  88. 88

    Zhang, Y. et al. Charge selective contacts, mobile ions and anomalous hysteresis in organic-inorganic perovskite solar cells. Mater. Horiz. http://dx.doi.org/10.1039/C4MH00238E (2015).

  89. 89

    Tress, W. et al. Understanding the rate-dependent JV hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ. Sci. 8, 995–1004 (2015).

    CAS  Google Scholar 

  90. 90

    Xiao, Z. et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nature Mater. 14, 193–198 (2015).

    CAS  Google Scholar 

  91. 91

    Riess, I. Voltage-controlled structure of certain p–n and p–i–n junctions. Phys. Rev. B 35, 5740–5743 (1987).

    CAS  Google Scholar 

  92. 92

    Riess, I. & Cahen, D. Analysis of light emitting polymer electrochemical cells. J. Appl. Phys. 82, 3147–3151 (1997).

    CAS  Google Scholar 

  93. 93

    Pei, Q., Yu, G., Zhang, C., Yang, Y. & Heeger, A. J. Polymer light-emitting electrochemical cells. Science 269, 1086–1088 (1995).

    CAS  Google Scholar 

  94. 94

    Mei, A. et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–298 (2014).

    CAS  Google Scholar 

  95. 95

    Wojciechowski, K. et al. Heterojunction modification for highly efficient organic–inorganic perovskite solar cells. ACS Nano 8, 12701–12709 (2014).

    CAS  Google Scholar 

  96. 96

    Leijtens, T. et al. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nature Commun. 4, 2885 (2013).

    Google Scholar 

  97. 97

    Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

    CAS  Google Scholar 

  98. 98

    Pellet, N. et al. Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 53, 3151–3157 (2014).

    CAS  Google Scholar 

  99. 99

    Era, M., Morimoto, S., Tsutsui, T. & Saito, S. Organic–inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4 . Appl. Phys. Lett. 65, 676–678 (1994).

    CAS  Google Scholar 

  100. 100

    Hong, X., Ishihara, T. & Nurmikko, A. V. Photoconductivity and electroluminescence in lead iodide based natural quantum well structures. Solid State Commun. 84, 657–661 (1992).

    CAS  Google Scholar 

  101. 101

    Chondroudis, K. & Mitzi, D. B. Electroluminescence from an organic−inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers. Chem. Mater. 11, 3028–3030 (1999).

    CAS  Google Scholar 

  102. 102

    Tan, Z. K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotech. 9, 687–692 (2014). This paper reports the first light-emitting diodes (LEDs) operating at room temperature using three-dimensional perovskites as the emissive species.

    CAS  Google Scholar 

  103. 103

    Kim, Y. H. et al. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv. Mater. 27, 1248–1254 (2015).

    CAS  Google Scholar 

  104. 104

    Kondo, T., Azuma, T., Yuasa, T. & Ito, R. Biexciton lasing in the layered perovskite-type material (C6H13NH3)2PbI4 . Solid State Commun. 105, 253–255 (1998).

    CAS  Google Scholar 

  105. 105

    Zhang, Q., Ha, S. T., Liu, X., Sum, T. C. & Xiong, Q. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett. 14, 5995–6001 (2014).

    CAS  Google Scholar 

  106. 106

    Sutherland, B. R., Hoogland, S., Adachi, M. M., Wong, C. T. & Sargent, E. H. Conformal organohalide perovskites enable lasing on spherical resonators. ACS Nano 8, 10947–10952 (2014).

    CAS  Google Scholar 

  107. 107

    Dhanker, R. et al. Random lasing in organo-lead halide perovskite microcrystal networks. Appl. Phys. Lett. 105, 151112 (2014).

    Google Scholar 

  108. 108

    Greenham, N. C. et al. Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers. Chem. Phys. Lett. 241, 89–96 (1995).

    CAS  Google Scholar 

  109. 109

    Metzger, W. K., Repins, I. L. & Contreras, M. A. Long lifetimes in high-efficiency Cu(In, Ga)Se2 solar cells. Appl. Phys. Lett. 93, 022110 (2008).

    Google Scholar 

  110. 110

    Nelson, R. J. & Sobers, R. G. Minority-carrier lifetimes and internal quantum efficiency of surface-free GaAs. J. Appl. Phys. 49, 6103–6108 (1978).

    CAS  Google Scholar 

  111. 111

    Ciszek, T. F. et al. Grain boundary and dislocation effects on the PV performance of high-purity silicon. Photovoltaic Specialists Conf. 101–105 (1993).

  112. 112

    Barnard, E. S. et al. Probing carrier lifetimes in photovoltaic materials using subsurface two-photon microscopy. Sci. Rep. 3, 2098 (2013).

    Google Scholar 

  113. 113

    Foertig, A., Rauh, J., Dyakonov, V. & Deibel, C. Shockley equation parameters of P3HT:PCBM solar cells determined by transient techniques. Phys. Rev. B 86, 115302 (2012).

    Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 604032 of the MESO project, the Engineering and Physical Sciences Research Council (EPSRC), the European Research Council, and Oxford Photovoltaics. The authors thank T. O'Malley, J. Jean and P. R. Brown for helpful discussions, and M. T. Klug for assistance with figure preparation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Henry J. Snaith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stranks, S., Snaith, H. Metal-halide perovskites for photovoltaic and light-emitting devices. Nature Nanotech 10, 391–402 (2015). https://doi.org/10.1038/nnano.2015.90

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research