Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Voltage-controlled quantum light from an atomically thin semiconductor

Subjects

Abstract

Although semiconductor defects can often be detrimental to device performance, they are also responsible for the breadth of functionality exhibited by modern optoelectronic devices1. Artificially engineered defects (so-called quantum dots) or naturally occurring defects in solids are currently being investigated for applications ranging from quantum information science2,3 and optoelectronics4 to high-resolution metrology5. In parallel, the quantum confinement exhibited by atomically thin materials (semi-metals, semiconductors and insulators) has ushered in an era of flatland optoelectronics whose full potential is still being articulated6,7,8,9,10,11,12,13,14,15,16,17,18. In this Letter we demonstrate the possibility of leveraging the atomically thin semiconductor tungsten diselenide (WSe2) as a host for quantum dot-like defects. We report that this previously unexplored solid-state quantum emitter in WSe2 generates single photons with emission properties that can be controlled via the application of external d.c. electric and magnetic fields. These new optically active quantum dots exhibit excited-state lifetimes on the order of 1 ns and remarkably large excitonic g-factors of 10. It is anticipated that WSe2 quantum dots will provide a novel platform for integrated solid-state quantum photonics2,3 and quantum information processing19, as well as a rich condensed-matter physics playground with which to explore the coupling of quantum dots and atomically thin semiconductors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Device and emission spectra.
Figure 2: Quantum dot light emission.
Figure 3: Voltage-controlled quantum light generation.
Figure 4: Magneto-optical spectroscopy.

References

  1. 1

    Yu, P. Y. & Cardona, M. Fundamentals of Semiconductors: Physics and Materials Properties 4th edn (Springer, 2010).

    Book  Google Scholar 

  2. 2

    Imamoglu, A. et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999).

    CAS  Article  Google Scholar 

  3. 3

    Hanson, R. & Awschalom, D. D. Coherent manipulation of single spins in semiconductors. Nature 453, 1043–1049 (2008).

    CAS  Article  Google Scholar 

  4. 4

    Konstantatos, G. et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006).

    CAS  Article  Google Scholar 

  5. 5

    Vamivakas, A. N., Zhao, Y., Fält, S., Badolato, A., Taylor, J. M. & Atature, M. Nanoscale optical electrometer. Phys. Rev. Lett. 107, 166802 (2011).

    CAS  Article  Google Scholar 

  6. 6

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Article  Google Scholar 

  7. 7

    Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    CAS  Article  Google Scholar 

  8. 8

    Zhang, Y., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

    CAS  Article  Google Scholar 

  9. 9

    Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 662–712 (2012).

    Google Scholar 

  10. 10

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  Article  Google Scholar 

  11. 11

    Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nature Nanotech. 9, 257–261 (2014).

    CAS  Article  Google Scholar 

  12. 12

    Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nature Nanotech. 9, 676–681 (2014).

    CAS  Article  Google Scholar 

  13. 13

    Goodfellow, K. M., Beams, R., Chakraborty, C., Novotny, L. & Vamivakas, A. N. Integrated nanophotonics based on nanowire plasmons and atomically thin material. Optica 1, 149–152 (2014).

    CAS  Article  Google Scholar 

  14. 14

    Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nature Nanotech. 9, 262–267 (2014).

    CAS  Article  Google Scholar 

  15. 15

    Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nature Nanotech. 9, 268–272 (2014).

    CAS  Article  Google Scholar 

  16. 16

    Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).

    CAS  Article  Google Scholar 

  17. 17

    Mak, K., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

    CAS  Article  Google Scholar 

  18. 18

    Lundeberg, M. B. & Folk, J. A. Harnessing chirality for valleytronics. Science 346, 422–423 (2014).

    CAS  Article  Google Scholar 

  19. 19

    Kormanyos, A., Zolyomi, V., Drummond, N. D. & Burkard, G. Spin–orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides. Phys. Rev. X 4, 011034 (2014).

    Google Scholar 

  20. 20

    Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  21. 21

    Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 2010, 1271–1275 (2010).

    Article  Google Scholar 

  22. 22

    Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2 . Nature Nanotech. 8, 634–638 (2013).

    CAS  Article  Google Scholar 

  23. 23

    He, K. et al. Tightly bound excitons in monolayer WSe2 . Phys. Rev. Lett. 113, 026803 (2014).

    Article  Google Scholar 

  24. 24

    Tongay, S. et al. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Sci. Rep. 3, 2657 (2013).

    Article  Google Scholar 

  25. 25

    Wang, G. et al. Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2 . Phys. Rev. B 90, 075413 (2014).

    Article  Google Scholar 

  26. 26

    Vamivakas, A. N. & Atature, M. Contemporary physics, photons and (artificial) atoms: an overview of optical spectroscopy techniques on quantum dots. Contemp. Phys. 51, 17–36 (2010).

    CAS  Article  Google Scholar 

  27. 27

    Bayer, M. et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 65, 195315 (2002).

    Article  Google Scholar 

  28. 28

    Vamivakas, A. N. et al. Observation of spin-dependent quantum jumps via quantum-dot resonance fluorescence. Nature 467, 297–300 (2010).

    CAS  Article  Google Scholar 

  29. 29

    Beams, R. et al. Nanoscale fluorescence lifetime imaging of an optical antenna with a single diamond NV center. Nano Lett. 13, 3807–3811 (2013).

    CAS  Article  Google Scholar 

  30. 30

    Muschik, C. A. et al. Harnessing vacuum forces for quantum sensing of graphene motion. Phys. Rev. Lett. 112, 223601 (2014).

    Article  Google Scholar 

  31. 31

    Srivastava, A. et al. Optically active quantum dots in monolayer WSe2 . Nature Nanotech. http://dx.doi.org/10.1038/nnano.2015.60 (2015).

  32. 32

    Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nature Nanotech. http://dx.doi.org/10.1038/nnano.2015.67 (2015).

  33. 33

    He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nature Nanotech. http://dx.doi.org/10.1038/nnano.2015.75 (2015).

Download references

Acknowledgements

A.N.V. acknowledges support from the Institute of Optics and National Science Foundation DMR award no. 1309734.

Author information

Affiliations

Authors

Contributions

R.B. and A.N.V. conceived the research. C.C. and K.G. fabricated the samples. C.C., L.K. and A.N.V. conducted the measurements. All authors discussed the data and wrote the manuscript.

Corresponding author

Correspondence to A. Nick Vamivakas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1876 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, C., Kinnischtzke, L., Goodfellow, K. et al. Voltage-controlled quantum light from an atomically thin semiconductor. Nature Nanotech 10, 507–511 (2015). https://doi.org/10.1038/nnano.2015.79

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research