Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Magnetoluminescence and valley polarized state of a two-dimensional electron gas in WS2 monolayers

Abstract

Materials often exhibit fundamentally new phenomena in reduced dimensions that potentially lead to novel applications. This is true for single-layer, two-dimensional semiconductor crystals of transition-metal dichalcogenides, MX2 (M = Mo, W and X = S, Se). They exhibit direct bandgaps with energies in the visible region at the two non-equivalent valleys in the Brillouin zone. This makes them suitable for optoelectronic applications that range from light-emitting diodes to light harvesting and light sensors1,2,3,4,5,6,7, and to valleytronics8,9,10,11,12,13,14,15,16,17. Here, we report the results of a magnetoluminescence study of WS2 single-layer crystals in which the strong spin–orbit interaction additionally locks the valley and spin degrees of freedom. The recombination of the negatively charged exciton in the presence of a two-dimensional electron gas (2DEG) is found to be circularly polarized at zero magnetic field despite being excited with unpolarized light, which indicates that the existence of a valley polarized 2DEG is caused by valley and spin locking and strong electron–electron interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PL spectra and optical image of monolayer WS2.
Figure 2: Valley-spin polarization from a WS2 monolayer at zero magnetic field and a temperature of 5 K.
Figure 3: Circular polarization as a function of magnetic field at a temperature of 5 K.
Figure 4: Band structure and quantum numbers.
Figure 5: Modelling of the dependence of the circular polarization on the magnetic field.

Similar content being viewed by others

References

  1. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  2. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  CAS  Google Scholar 

  3. Bernardi, M., Palummo, M. & Grossman, J. C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13, 3664–3670 (2013).

    Article  CAS  Google Scholar 

  4. Korn, T., Heydrich, S., Hirmer, M., Schmutzler, J. & Schuller, C. Low-temperature photocarrier dynamics in monolayer MoS2 . Appl. Phys. Lett. 99, 102109 (2011).

    Article  Google Scholar 

  5. Perkins, F. K. et al. Chemical vapor sensing with mono layer MoS2 . Nano Lett. 13, 668–673 (2013).

    Article  CAS  Google Scholar 

  6. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699–712 (2012).

    Article  CAS  Google Scholar 

  7. Zhang, Y. J., Oka, T., Suzuki, R., Ye, J. T. & Iwasa, Y. Electrically switchable chiral light-emitting transistor. Science 344, 725–728 (2014).

    Article  CAS  Google Scholar 

  8. Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Commun. 3, 887 ( 2012).

  9. Kioseoglou, G. et al. Valley polarization and intervalley scattering in monolayer MoS2 . Appl. Phys. Lett. 101, 221907 (2012).

    Article  Google Scholar 

  10. Mak, K. F., He, K. L., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

    Article  CAS  Google Scholar 

  11. Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nature Commun. 4, 1 (2013).

    Article  CAS  Google Scholar 

  12. Sallen, G. et al. Robust optical emission polarization in MoS2 monolayers through selective valley excitation. Phys. Rev. B 86, 081301 (2012).

    Article  Google Scholar 

  13. Zeng, H. L., Dai, J. F., Yao, W., Xiao, D. & Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).

    Article  CAS  Google Scholar 

  14. Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    Article  CAS  Google Scholar 

  15. Gutierrez, H. R. et al. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 13, 3447–3454 (2013).

    Article  CAS  Google Scholar 

  16. Jones, A. M. et al. Spin-layer locking effects in optical orientation of exciton spin in bilayer WSe2 . Nature Phys. 10, 130–134 (2014).

    Article  CAS  Google Scholar 

  17. Zhao, W. J. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2 . ACS Nano 7, 791–797 (2013).

    Article  CAS  Google Scholar 

  18. Skolnick, M. S. et al. Observation of a many-body edge singularity in quantum-well luminescence spectra. Phys. Rev. Lett. 58, 2130–2133 (1987).

    Article  CAS  Google Scholar 

  19. Hawrylak, P. Optical-properties of a 2-dimensional electron-gas – evolution of spectra from excitons to Fermi-edge singularities. Phys. Rev. B 44, 3821–3828 (1991).

    Article  CAS  Google Scholar 

  20. Yusa, G., Shtrikman, H. & Bar-Joseph, I. Charged excitons in the fractional quantum Hall regime. Phys. Rev. Lett. 87, 216402 (2001).

    Article  CAS  Google Scholar 

  21. Berkdemir, A. et al. Identification of individual and few layers of WS2 using Raman spectroscopy. Sci. Rep. 3, 1–8 (2013).

    Article  Google Scholar 

  22. Mitioglu, A. A. et al. Optical manipulation of the exciton charge state in single-layer tungsten disulfide. Phys. Rev. B 88, 245403 (2013).

    Article  Google Scholar 

  23. Kioseoglou, G. et al. Photoluminescence and reflectance studies of negatively charged excitons in GaAs/Al0.3Ga0.7As quantum-well structures. Phys. Rev. B 61, 4780–4785 (2000).

    Article  CAS  Google Scholar 

  24. Kadantsev, E. S. & Hawrylak, P. Electronic structure of a single MoS2 monolayer. Solid State Commun. 152, 909–913 (2012).

    Article  CAS  Google Scholar 

  25. Attaccalite, C., Moroni, S., Gori-Giorgi, P. & Bachelet, G. B. Correlation energy and spin polarization in the 2D electron gas. Phys. Rev. Lett. 88, 256601 (2002).

    Article  Google Scholar 

  26. Subasi, A. L. & Tanatar, B. Effects of a parallel magnetic field on the ground-state magnetic properties of a two-dimensional electron gas. Phys. Rev. B 78, 155304 (2008).

    Article  Google Scholar 

  27. Narozhny, B. N., Aleiner, I. L. & Larkin, A. I. Magnetic fluctuations in two-dimensional metals close to the Stoner instability. Phys. Rev. B 62, 14898–14911 (2000).

    Article  CAS  Google Scholar 

  28. Korkusinski, M., Sheng, W. & Hawrylak, P. Designing quantum systems in self-assembled quantum dots. Phys. Status Solidi B 238, 246–249 (2003).

    Article  CAS  Google Scholar 

  29. Ghosh, A., Ford, C. J. B., Pepper, M., Beere, H. E. & Ritchie, D. A. Possible evidence of a spontaneous spin polarization in mesoscopic two-dimensional electron systems. Phys. Rev. Lett. 92, 116601 (2004).

    Article  CAS  Google Scholar 

  30. Teneh, N., Kuntsevich, A. Y., Pudalov, V. M. & Reznikov, M. Spin-droplet state of an interacting 2D electron system. Phys. Rev. Lett. 109, 226403 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S. Banerjee and his group at SUNY Buffalo for technical support. Work at SUNY Buffalo has been supported by the Office of Naval Research. I.O., M.K. and P.H. acknowledge support of National Research Council Quantum Photonic Sensing and Security program and of the Natural Sciences and Engineering Research Council. G.K. acknowledges support by the Greek General Secretariat for Research and Technology project ERC02-EXEL (contract No. 6260).

Author information

Authors and Affiliations

Authors

Contributions

T.S., Y.T., B.B., L.S., A.P. and G.K. designed and performed the experimental measurements, and I.O., M.K. and P.H. provided the theoretical analysis. A.P., G.K., M.K. and P.H. wrote the manuscript.

Corresponding authors

Correspondence to A. Petrou or P. Hawrylak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scrace, T., Tsai, Y., Barman, B. et al. Magnetoluminescence and valley polarized state of a two-dimensional electron gas in WS2 monolayers. Nature Nanotech 10, 603–607 (2015). https://doi.org/10.1038/nnano.2015.78

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.78

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing